Sini Mohan , Siju Surendran , N.A. Malini , K. Roy George
{"title":"评估双酚 S (BPS) 对鳢鱼生殖系统的毒性:环境风险评估的启示。","authors":"Sini Mohan , Siju Surendran , N.A. Malini , K. Roy George","doi":"10.1016/j.reprotox.2024.108690","DOIUrl":null,"url":null,"abstract":"<div><p>Aquatic ecosystems face significant exposure to endocrine-disrupting chemicals (EDCs), which can mimic, block, or alter the synthesis of endogenous hormones. Bisphenol A (BPA), a widely known EDC, has been phased out from consumer products due to concerns about its potential impacts on human health. In its place, bisphenol S (BPS), an organic compound, has been increasingly used in the production of polycarbonate plastics, epoxy resins, thermal receipt papers, and currency. Vitellogenin (<em>Vtg</em>), a yolk precursor protein synthesized in the liver and present in oviparous fish, particularly males, serves as a pertinent biomarker for studying the effects of estrogenic EDCs on fish. This study aimed to assess the impact of BPS on reproductive parameters and hepatic vitellogenin expression in <em>Channa striatus</em>. The LC50 of BPS was determined to be 128.8 mg/L. Experimental groups included control and BPS-exposed fish, with sub-lethal concentrations of BPS (1 mg/L, 4 mg/L, and 12 mg/L) administered and effects monitored at seven- and twenty-one-day intervals. Significant decreases in gonadosomatic index (GSI), ova diameter, and fecundity were observed in BPS-exposed <em>Channa striatus</em>. Hepatic <em>Vtg</em> mRNA expression was downregulated in female and upregulated in male following BPS exposure. Serum hormone analysis confirmed the estrogenic activity of BPS. These findings underscore BPS's ability as an endocrine disruptor to interfere with hormone synthesis and disrupt spermatogenesis and oogenesis processes in <em>Channa striatus</em>. This research contributes to understanding the endocrine-disrupting effects of BPS on aquatic organisms, highlighting potential ecological implications and the need for continued monitoring and regulatory considerations.</p></div>","PeriodicalId":21137,"journal":{"name":"Reproductive toxicology","volume":"130 ","pages":"Article 108690"},"PeriodicalIF":3.3000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of Bisphenol S (BPS) toxicity on the reproductive system of Channa striatus: Insights for environmental risk assessment\",\"authors\":\"Sini Mohan , Siju Surendran , N.A. Malini , K. Roy George\",\"doi\":\"10.1016/j.reprotox.2024.108690\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Aquatic ecosystems face significant exposure to endocrine-disrupting chemicals (EDCs), which can mimic, block, or alter the synthesis of endogenous hormones. Bisphenol A (BPA), a widely known EDC, has been phased out from consumer products due to concerns about its potential impacts on human health. In its place, bisphenol S (BPS), an organic compound, has been increasingly used in the production of polycarbonate plastics, epoxy resins, thermal receipt papers, and currency. Vitellogenin (<em>Vtg</em>), a yolk precursor protein synthesized in the liver and present in oviparous fish, particularly males, serves as a pertinent biomarker for studying the effects of estrogenic EDCs on fish. This study aimed to assess the impact of BPS on reproductive parameters and hepatic vitellogenin expression in <em>Channa striatus</em>. The LC50 of BPS was determined to be 128.8 mg/L. Experimental groups included control and BPS-exposed fish, with sub-lethal concentrations of BPS (1 mg/L, 4 mg/L, and 12 mg/L) administered and effects monitored at seven- and twenty-one-day intervals. Significant decreases in gonadosomatic index (GSI), ova diameter, and fecundity were observed in BPS-exposed <em>Channa striatus</em>. Hepatic <em>Vtg</em> mRNA expression was downregulated in female and upregulated in male following BPS exposure. Serum hormone analysis confirmed the estrogenic activity of BPS. These findings underscore BPS's ability as an endocrine disruptor to interfere with hormone synthesis and disrupt spermatogenesis and oogenesis processes in <em>Channa striatus</em>. This research contributes to understanding the endocrine-disrupting effects of BPS on aquatic organisms, highlighting potential ecological implications and the need for continued monitoring and regulatory considerations.</p></div>\",\"PeriodicalId\":21137,\"journal\":{\"name\":\"Reproductive toxicology\",\"volume\":\"130 \",\"pages\":\"Article 108690\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reproductive toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0890623824001576\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"REPRODUCTIVE BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reproductive toxicology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0890623824001576","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"REPRODUCTIVE BIOLOGY","Score":null,"Total":0}
Evaluation of Bisphenol S (BPS) toxicity on the reproductive system of Channa striatus: Insights for environmental risk assessment
Aquatic ecosystems face significant exposure to endocrine-disrupting chemicals (EDCs), which can mimic, block, or alter the synthesis of endogenous hormones. Bisphenol A (BPA), a widely known EDC, has been phased out from consumer products due to concerns about its potential impacts on human health. In its place, bisphenol S (BPS), an organic compound, has been increasingly used in the production of polycarbonate plastics, epoxy resins, thermal receipt papers, and currency. Vitellogenin (Vtg), a yolk precursor protein synthesized in the liver and present in oviparous fish, particularly males, serves as a pertinent biomarker for studying the effects of estrogenic EDCs on fish. This study aimed to assess the impact of BPS on reproductive parameters and hepatic vitellogenin expression in Channa striatus. The LC50 of BPS was determined to be 128.8 mg/L. Experimental groups included control and BPS-exposed fish, with sub-lethal concentrations of BPS (1 mg/L, 4 mg/L, and 12 mg/L) administered and effects monitored at seven- and twenty-one-day intervals. Significant decreases in gonadosomatic index (GSI), ova diameter, and fecundity were observed in BPS-exposed Channa striatus. Hepatic Vtg mRNA expression was downregulated in female and upregulated in male following BPS exposure. Serum hormone analysis confirmed the estrogenic activity of BPS. These findings underscore BPS's ability as an endocrine disruptor to interfere with hormone synthesis and disrupt spermatogenesis and oogenesis processes in Channa striatus. This research contributes to understanding the endocrine-disrupting effects of BPS on aquatic organisms, highlighting potential ecological implications and the need for continued monitoring and regulatory considerations.
期刊介绍:
Drawing from a large number of disciplines, Reproductive Toxicology publishes timely, original research on the influence of chemical and physical agents on reproduction. Written by and for obstetricians, pediatricians, embryologists, teratologists, geneticists, toxicologists, andrologists, and others interested in detecting potential reproductive hazards, the journal is a forum for communication among researchers and practitioners. Articles focus on the application of in vitro, animal and clinical research to the practice of clinical medicine.
All aspects of reproduction are within the scope of Reproductive Toxicology, including the formation and maturation of male and female gametes, sexual function, the events surrounding the fusion of gametes and the development of the fertilized ovum, nourishment and transport of the conceptus within the genital tract, implantation, embryogenesis, intrauterine growth, placentation and placental function, parturition, lactation and neonatal survival. Adverse reproductive effects in males will be considered as significant as adverse effects occurring in females. To provide a balanced presentation of approaches, equal emphasis will be given to clinical and animal or in vitro work. Typical end points that will be studied by contributors include infertility, sexual dysfunction, spontaneous abortion, malformations, abnormal histogenesis, stillbirth, intrauterine growth retardation, prematurity, behavioral abnormalities, and perinatal mortality.