Sushree Arpitabala Yadav , V. Kusum Vats , Rohit Sharma , Nitish Chauhan , Mahesh Subramanian , Amit Das , Drishty Satpati
{"title":"核定位序列(NLS)接枝 HER2 受体亲和肽的 177Lu 标记","authors":"Sushree Arpitabala Yadav , V. Kusum Vats , Rohit Sharma , Nitish Chauhan , Mahesh Subramanian , Amit Das , Drishty Satpati","doi":"10.1016/j.bmc.2024.117883","DOIUrl":null,"url":null,"abstract":"<div><p>Tagging of cell permeable nuclear localization sequence (NLS) with receptor targeting peptide vectors is an attractive strategy for selectively targeted translocation of therapeutic cargoes. The present study aimed at grafting nuclear localization sequence (NLS) onto breast cancer targeting rL-A9 peptide. Molecular docking analysis revealed higher binding affinity of the peptide, DOTA-NLS-rL-A9 (−26.1 kJ/mol) towards HER2 receptor in comparison to DOTA-rL-A9 peptide (−22.2 kJ/mol). Confocal microscopy data suggested significantly enhanced cellular internalization of NLS-tagged peptide. The engineered HER2-selective, DOTA-NLS-rL-A9 peptide scaffold was radiolabeled with Lu-177 for intracellular delivery of the theranostic radionuclide into tumor cells. [<sup>177</sup>Lu]Lu-DOTA-NLS-rL-A9 exhibited significantly enhanced binding affinity (4.58 ± 1.77 nM) towards human breast carcinoma SKBR3 cells and cellular internalization (85 % at 24 h) compared to its original analog, [<sup>177</sup>Lu]Lu-DOTA-rL-A9. <em>In vivo</em> biodistribution studies showed consistent retention of [<sup>177</sup>Lu]Lu-DOTA-NLS-rL-A9 in the tumor with negligible washout of radioactivity (∼4.1 % ID/g at 48 h). Prolonged tumor activity with rapid off-target tissue clearance resulted in significantly high tumor-to-background ratios. The radiopeptide, [<sup>177</sup>Lu]Lu-DOTA-NLS-rL-A9 thus, being precisely confined into HER2-expressing tumor cells and exhibiting favourable pharmacokinetic features is an efficient candidate for further screening.</p></div>","PeriodicalId":255,"journal":{"name":"Bioorganic & Medicinal Chemistry","volume":"112 ","pages":"Article 117883"},"PeriodicalIF":3.3000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"177Lu-labeling of nuclear localization sequence (NLS)-grafted HER2-receptor affine peptide\",\"authors\":\"Sushree Arpitabala Yadav , V. Kusum Vats , Rohit Sharma , Nitish Chauhan , Mahesh Subramanian , Amit Das , Drishty Satpati\",\"doi\":\"10.1016/j.bmc.2024.117883\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Tagging of cell permeable nuclear localization sequence (NLS) with receptor targeting peptide vectors is an attractive strategy for selectively targeted translocation of therapeutic cargoes. The present study aimed at grafting nuclear localization sequence (NLS) onto breast cancer targeting rL-A9 peptide. Molecular docking analysis revealed higher binding affinity of the peptide, DOTA-NLS-rL-A9 (−26.1 kJ/mol) towards HER2 receptor in comparison to DOTA-rL-A9 peptide (−22.2 kJ/mol). Confocal microscopy data suggested significantly enhanced cellular internalization of NLS-tagged peptide. The engineered HER2-selective, DOTA-NLS-rL-A9 peptide scaffold was radiolabeled with Lu-177 for intracellular delivery of the theranostic radionuclide into tumor cells. [<sup>177</sup>Lu]Lu-DOTA-NLS-rL-A9 exhibited significantly enhanced binding affinity (4.58 ± 1.77 nM) towards human breast carcinoma SKBR3 cells and cellular internalization (85 % at 24 h) compared to its original analog, [<sup>177</sup>Lu]Lu-DOTA-rL-A9. <em>In vivo</em> biodistribution studies showed consistent retention of [<sup>177</sup>Lu]Lu-DOTA-NLS-rL-A9 in the tumor with negligible washout of radioactivity (∼4.1 % ID/g at 48 h). Prolonged tumor activity with rapid off-target tissue clearance resulted in significantly high tumor-to-background ratios. The radiopeptide, [<sup>177</sup>Lu]Lu-DOTA-NLS-rL-A9 thus, being precisely confined into HER2-expressing tumor cells and exhibiting favourable pharmacokinetic features is an efficient candidate for further screening.</p></div>\",\"PeriodicalId\":255,\"journal\":{\"name\":\"Bioorganic & Medicinal Chemistry\",\"volume\":\"112 \",\"pages\":\"Article 117883\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioorganic & Medicinal Chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0968089624002979\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioorganic & Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0968089624002979","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
177Lu-labeling of nuclear localization sequence (NLS)-grafted HER2-receptor affine peptide
Tagging of cell permeable nuclear localization sequence (NLS) with receptor targeting peptide vectors is an attractive strategy for selectively targeted translocation of therapeutic cargoes. The present study aimed at grafting nuclear localization sequence (NLS) onto breast cancer targeting rL-A9 peptide. Molecular docking analysis revealed higher binding affinity of the peptide, DOTA-NLS-rL-A9 (−26.1 kJ/mol) towards HER2 receptor in comparison to DOTA-rL-A9 peptide (−22.2 kJ/mol). Confocal microscopy data suggested significantly enhanced cellular internalization of NLS-tagged peptide. The engineered HER2-selective, DOTA-NLS-rL-A9 peptide scaffold was radiolabeled with Lu-177 for intracellular delivery of the theranostic radionuclide into tumor cells. [177Lu]Lu-DOTA-NLS-rL-A9 exhibited significantly enhanced binding affinity (4.58 ± 1.77 nM) towards human breast carcinoma SKBR3 cells and cellular internalization (85 % at 24 h) compared to its original analog, [177Lu]Lu-DOTA-rL-A9. In vivo biodistribution studies showed consistent retention of [177Lu]Lu-DOTA-NLS-rL-A9 in the tumor with negligible washout of radioactivity (∼4.1 % ID/g at 48 h). Prolonged tumor activity with rapid off-target tissue clearance resulted in significantly high tumor-to-background ratios. The radiopeptide, [177Lu]Lu-DOTA-NLS-rL-A9 thus, being precisely confined into HER2-expressing tumor cells and exhibiting favourable pharmacokinetic features is an efficient candidate for further screening.
期刊介绍:
Bioorganic & Medicinal Chemistry provides an international forum for the publication of full original research papers and critical reviews on molecular interactions in key biological targets such as receptors, channels, enzymes, nucleotides, lipids and saccharides.
The aim of the journal is to promote a better understanding at the molecular level of life processes, and living organisms, as well as the interaction of these with chemical agents. A special feature will be that colour illustrations will be reproduced at no charge to the author, provided that the Editor agrees that colour is essential to the information content of the illustration in question.