W. Matt Jolly , Patrick H. Freeborn , Larry S. Bradshaw , Jon Wallace , Stuart Brittain
{"title":"更新美国国家火灾危险分级系统(第 4 版):简化燃料模型,改进活燃料和死燃料湿度计算","authors":"W. Matt Jolly , Patrick H. Freeborn , Larry S. Bradshaw , Jon Wallace , Stuart Brittain","doi":"10.1016/j.envsoft.2024.106181","DOIUrl":null,"url":null,"abstract":"<div><p>The US National Fire Danger Rating System (USNFDRS) supports wildfire management decisions nationwide, but it has not been updated since 1988. Here we implement new fuel moisture models, and we simplify the fuel models while maintaining the overall USNFDRS structure. Modeled and measured live fuel moisture content values were highly correlated (<span><math><mrow><msup><mrow><mi>r</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><mn>0</mn><mo>.</mo><mn>629</mn></mrow></math></span> with defaults and <span><math><mrow><msup><mrow><mi>r</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><mn>0</mn><mo>.</mo><mn>693</mn></mrow></math></span> when species and location optimized). We also consolidated fuel models to five fuel types that eliminated significant index cross-correlation. Index seasonality compared between old (V2) and new USNFDRS models (v4) across six US National Forests was very similar (<span><math><mrow><mi>ρ</mi><mo>=</mo></mrow></math></span> 0.97). V4 was as good or better than V2 at predicting fire days in 92% of the cases tested and V4 effectively predicted wildfire days and large fire ignition days (AUCs 0.647 to 0.915). USNFDRS V4 can adequately depict spatial and temporal wildland fire potential and it can be adapted for worldwide use.</p></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"181 ","pages":"Article 106181"},"PeriodicalIF":4.8000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1364815224002421/pdfft?md5=0bad9d72fff3df2a680583db6650ac7a&pid=1-s2.0-S1364815224002421-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Modernizing the US National Fire Danger Rating System (version 4): Simplified fuel models and improved live and dead fuel moisture calculations\",\"authors\":\"W. Matt Jolly , Patrick H. Freeborn , Larry S. Bradshaw , Jon Wallace , Stuart Brittain\",\"doi\":\"10.1016/j.envsoft.2024.106181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The US National Fire Danger Rating System (USNFDRS) supports wildfire management decisions nationwide, but it has not been updated since 1988. Here we implement new fuel moisture models, and we simplify the fuel models while maintaining the overall USNFDRS structure. Modeled and measured live fuel moisture content values were highly correlated (<span><math><mrow><msup><mrow><mi>r</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><mn>0</mn><mo>.</mo><mn>629</mn></mrow></math></span> with defaults and <span><math><mrow><msup><mrow><mi>r</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><mn>0</mn><mo>.</mo><mn>693</mn></mrow></math></span> when species and location optimized). We also consolidated fuel models to five fuel types that eliminated significant index cross-correlation. Index seasonality compared between old (V2) and new USNFDRS models (v4) across six US National Forests was very similar (<span><math><mrow><mi>ρ</mi><mo>=</mo></mrow></math></span> 0.97). V4 was as good or better than V2 at predicting fire days in 92% of the cases tested and V4 effectively predicted wildfire days and large fire ignition days (AUCs 0.647 to 0.915). USNFDRS V4 can adequately depict spatial and temporal wildland fire potential and it can be adapted for worldwide use.</p></div>\",\"PeriodicalId\":310,\"journal\":{\"name\":\"Environmental Modelling & Software\",\"volume\":\"181 \",\"pages\":\"Article 106181\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1364815224002421/pdfft?md5=0bad9d72fff3df2a680583db6650ac7a&pid=1-s2.0-S1364815224002421-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Modelling & Software\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1364815224002421\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364815224002421","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Modernizing the US National Fire Danger Rating System (version 4): Simplified fuel models and improved live and dead fuel moisture calculations
The US National Fire Danger Rating System (USNFDRS) supports wildfire management decisions nationwide, but it has not been updated since 1988. Here we implement new fuel moisture models, and we simplify the fuel models while maintaining the overall USNFDRS structure. Modeled and measured live fuel moisture content values were highly correlated ( with defaults and when species and location optimized). We also consolidated fuel models to five fuel types that eliminated significant index cross-correlation. Index seasonality compared between old (V2) and new USNFDRS models (v4) across six US National Forests was very similar ( 0.97). V4 was as good or better than V2 at predicting fire days in 92% of the cases tested and V4 effectively predicted wildfire days and large fire ignition days (AUCs 0.647 to 0.915). USNFDRS V4 can adequately depict spatial and temporal wildland fire potential and it can be adapted for worldwide use.
期刊介绍:
Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.