Hirushi Kumarapperuma , Zheng-Jie Chia , Sanchia Marie Malapitan , Thomas N. Wight , Peter J. Little , Danielle Kamato
{"title":"反应滞留假说是动脉壁定向疗法预防动脉粥样硬化的靶点来源:重要综述","authors":"Hirushi Kumarapperuma , Zheng-Jie Chia , Sanchia Marie Malapitan , Thomas N. Wight , Peter J. Little , Danielle Kamato","doi":"10.1016/j.atherosclerosis.2024.118552","DOIUrl":null,"url":null,"abstract":"<div><p>The subendothelial retention of circulating lipoproteins on extracellular matrix proteins and proteoglycans is one of the earliest events in the development of atherosclerosis. Multiple factors, including the size, type, composition, surrounding pH, and chemical modifications to lipoproteins, influence the electrostatic interactions between relevant moieties of the apolipoproteins on lipoproteins and the glycosaminoglycans of proteoglycans. The length and chemical composition of glycosaminoglycan chains attached to proteoglycan core proteins determine the extent of initial lipoprotein binding and retention in the artery wall. The phenomena of hyperelongation of glycosaminoglycan chains is associated with initial lipid retention and later atherosclerotic plaque formation. This review includes a summary of the current literature surrounding cellular mechanisms leading to GAG chain modification and lipid retention and discusses potential therapeutic strategies to target lipoprotein:proteoglycan interactions to prevent the development and progression of atherosclerosis.</p></div>","PeriodicalId":8623,"journal":{"name":"Atherosclerosis","volume":"397 ","pages":"Article 118552"},"PeriodicalIF":4.9000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0021915024011249/pdfft?md5=bdb295ae4600e349cba2b3e6b0d6aa0f&pid=1-s2.0-S0021915024011249-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Response to retention hypothesis as a source of targets for arterial wall-directed therapies to prevent atherosclerosis: A critical review\",\"authors\":\"Hirushi Kumarapperuma , Zheng-Jie Chia , Sanchia Marie Malapitan , Thomas N. Wight , Peter J. Little , Danielle Kamato\",\"doi\":\"10.1016/j.atherosclerosis.2024.118552\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The subendothelial retention of circulating lipoproteins on extracellular matrix proteins and proteoglycans is one of the earliest events in the development of atherosclerosis. Multiple factors, including the size, type, composition, surrounding pH, and chemical modifications to lipoproteins, influence the electrostatic interactions between relevant moieties of the apolipoproteins on lipoproteins and the glycosaminoglycans of proteoglycans. The length and chemical composition of glycosaminoglycan chains attached to proteoglycan core proteins determine the extent of initial lipoprotein binding and retention in the artery wall. The phenomena of hyperelongation of glycosaminoglycan chains is associated with initial lipid retention and later atherosclerotic plaque formation. This review includes a summary of the current literature surrounding cellular mechanisms leading to GAG chain modification and lipid retention and discusses potential therapeutic strategies to target lipoprotein:proteoglycan interactions to prevent the development and progression of atherosclerosis.</p></div>\",\"PeriodicalId\":8623,\"journal\":{\"name\":\"Atherosclerosis\",\"volume\":\"397 \",\"pages\":\"Article 118552\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0021915024011249/pdfft?md5=bdb295ae4600e349cba2b3e6b0d6aa0f&pid=1-s2.0-S0021915024011249-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atherosclerosis\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021915024011249\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atherosclerosis","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021915024011249","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
Response to retention hypothesis as a source of targets for arterial wall-directed therapies to prevent atherosclerosis: A critical review
The subendothelial retention of circulating lipoproteins on extracellular matrix proteins and proteoglycans is one of the earliest events in the development of atherosclerosis. Multiple factors, including the size, type, composition, surrounding pH, and chemical modifications to lipoproteins, influence the electrostatic interactions between relevant moieties of the apolipoproteins on lipoproteins and the glycosaminoglycans of proteoglycans. The length and chemical composition of glycosaminoglycan chains attached to proteoglycan core proteins determine the extent of initial lipoprotein binding and retention in the artery wall. The phenomena of hyperelongation of glycosaminoglycan chains is associated with initial lipid retention and later atherosclerotic plaque formation. This review includes a summary of the current literature surrounding cellular mechanisms leading to GAG chain modification and lipid retention and discusses potential therapeutic strategies to target lipoprotein:proteoglycan interactions to prevent the development and progression of atherosclerosis.
期刊介绍:
Atherosclerosis has an open access mirror journal Atherosclerosis: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
Atherosclerosis brings together, from all sources, papers concerned with investigation on atherosclerosis, its risk factors and clinical manifestations. Atherosclerosis covers basic and translational, clinical and population research approaches to arterial and vascular biology and disease, as well as their risk factors including: disturbances of lipid and lipoprotein metabolism, diabetes and hypertension, thrombosis, and inflammation. The Editors are interested in original or review papers dealing with the pathogenesis, environmental, genetic and epigenetic basis, diagnosis or treatment of atherosclerosis and related diseases as well as their risk factors.