分析瓜尔胶及其衍生物的拓扑描述符以预测碳水化合物的物理性质

IF 3.7 2区 化学 Q2 AUTOMATION & CONTROL SYSTEMS Chemometrics and Intelligent Laboratory Systems Pub Date : 2024-08-24 DOI:10.1016/j.chemolab.2024.105203
Xiujun Zhang , Shamaila Yousaf , Anisa Naeem , Ferdous M. Tawfiq , Adnan Aslam
{"title":"分析瓜尔胶及其衍生物的拓扑描述符以预测碳水化合物的物理性质","authors":"Xiujun Zhang ,&nbsp;Shamaila Yousaf ,&nbsp;Anisa Naeem ,&nbsp;Ferdous M. Tawfiq ,&nbsp;Adnan Aslam","doi":"10.1016/j.chemolab.2024.105203","DOIUrl":null,"url":null,"abstract":"<div><p>Guar gum is a non-ionic polysaccharide found in abundance in nature. It may be used as a thickening agent, stabilizer, or emulsifier in pharmaceutical formulations, food products, or cosmetics. Its ability to form viscous solutions makes it useful in drug delivery systems, controlled release formulations, and as a matrix for oral drug delivery. The investigation of chemical structures through graph invariants is of great concern. Topological descriptors are numerical numbers associated with the molecular structure and have the ability to predict certain physical and chemical properties of the underlying structure. In this paper, we have calculated the harmonic index, the inverse sum indeg index, the third Zagreb index, the Hyper Zagreb index, the sigma index, the reformulated first Zagreb index, the reformulated multiplicative first Zagreb index, the Harmonic–arithmetic index, and the Atom Bond sum connectivity indices of guar gum and its chemical derivatives. Finally, the chemical applicability of these topological descriptors is checked for different carbohydrates (monosaccharides, disaccharides, and polysaccharides) by using straight-line, parabolic and logarithmic regression models. It has been observed that these topological descriptors are useful to predict two physical properties, namely density and molecular weight.</p></div>","PeriodicalId":9774,"journal":{"name":"Chemometrics and Intelligent Laboratory Systems","volume":"253 ","pages":"Article 105203"},"PeriodicalIF":3.7000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analyzing topological descriptors of guar gum and its derivatives for predicting physical properties in carbohydrates\",\"authors\":\"Xiujun Zhang ,&nbsp;Shamaila Yousaf ,&nbsp;Anisa Naeem ,&nbsp;Ferdous M. Tawfiq ,&nbsp;Adnan Aslam\",\"doi\":\"10.1016/j.chemolab.2024.105203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Guar gum is a non-ionic polysaccharide found in abundance in nature. It may be used as a thickening agent, stabilizer, or emulsifier in pharmaceutical formulations, food products, or cosmetics. Its ability to form viscous solutions makes it useful in drug delivery systems, controlled release formulations, and as a matrix for oral drug delivery. The investigation of chemical structures through graph invariants is of great concern. Topological descriptors are numerical numbers associated with the molecular structure and have the ability to predict certain physical and chemical properties of the underlying structure. In this paper, we have calculated the harmonic index, the inverse sum indeg index, the third Zagreb index, the Hyper Zagreb index, the sigma index, the reformulated first Zagreb index, the reformulated multiplicative first Zagreb index, the Harmonic–arithmetic index, and the Atom Bond sum connectivity indices of guar gum and its chemical derivatives. Finally, the chemical applicability of these topological descriptors is checked for different carbohydrates (monosaccharides, disaccharides, and polysaccharides) by using straight-line, parabolic and logarithmic regression models. It has been observed that these topological descriptors are useful to predict two physical properties, namely density and molecular weight.</p></div>\",\"PeriodicalId\":9774,\"journal\":{\"name\":\"Chemometrics and Intelligent Laboratory Systems\",\"volume\":\"253 \",\"pages\":\"Article 105203\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemometrics and Intelligent Laboratory Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169743924001436\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemometrics and Intelligent Laboratory Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169743924001436","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

瓜尔胶是一种非离子多糖,在自然界中含量丰富。它可在药物配方、食品或化妆品中用作增稠剂、稳定剂或乳化剂。它能形成粘性溶液,因此可用于给药系统、控释配方和口服给药基质。通过图不变式研究化学结构备受关注。拓扑描述符是与分子结构相关联的数字,能够预测底层结构的某些物理和化学特性。本文计算了瓜尔胶及其化学衍生物的谐波指数、逆和 indeg 指数、第三萨格勒布指数、超萨格勒布指数、西格玛指数、重构第一萨格勒布指数、重构乘法第一萨格勒布指数、谐波算术指数和原子键和连通性指数。最后,通过使用直线、抛物线和对数回归模型,检验了这些拓扑描述符对不同碳水化合物(单糖、双糖和多糖)的化学适用性。结果表明,这些拓扑描述符有助于预测两种物理性质,即密度和分子量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analyzing topological descriptors of guar gum and its derivatives for predicting physical properties in carbohydrates

Guar gum is a non-ionic polysaccharide found in abundance in nature. It may be used as a thickening agent, stabilizer, or emulsifier in pharmaceutical formulations, food products, or cosmetics. Its ability to form viscous solutions makes it useful in drug delivery systems, controlled release formulations, and as a matrix for oral drug delivery. The investigation of chemical structures through graph invariants is of great concern. Topological descriptors are numerical numbers associated with the molecular structure and have the ability to predict certain physical and chemical properties of the underlying structure. In this paper, we have calculated the harmonic index, the inverse sum indeg index, the third Zagreb index, the Hyper Zagreb index, the sigma index, the reformulated first Zagreb index, the reformulated multiplicative first Zagreb index, the Harmonic–arithmetic index, and the Atom Bond sum connectivity indices of guar gum and its chemical derivatives. Finally, the chemical applicability of these topological descriptors is checked for different carbohydrates (monosaccharides, disaccharides, and polysaccharides) by using straight-line, parabolic and logarithmic regression models. It has been observed that these topological descriptors are useful to predict two physical properties, namely density and molecular weight.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.50
自引率
7.70%
发文量
169
审稿时长
3.4 months
期刊介绍: Chemometrics and Intelligent Laboratory Systems publishes original research papers, short communications, reviews, tutorials and Original Software Publications reporting on development of novel statistical, mathematical, or computer techniques in Chemistry and related disciplines. Chemometrics is the chemical discipline that uses mathematical and statistical methods to design or select optimal procedures and experiments, and to provide maximum chemical information by analysing chemical data. The journal deals with the following topics: 1) Development of new statistical, mathematical and chemometrical methods for Chemistry and related fields (Environmental Chemistry, Biochemistry, Toxicology, System Biology, -Omics, etc.) 2) Novel applications of chemometrics to all branches of Chemistry and related fields (typical domains of interest are: process data analysis, experimental design, data mining, signal processing, supervised modelling, decision making, robust statistics, mixture analysis, multivariate calibration etc.) Routine applications of established chemometrical techniques will not be considered. 3) Development of new software that provides novel tools or truly advances the use of chemometrical methods. 4) Well characterized data sets to test performance for the new methods and software. The journal complies with International Committee of Medical Journal Editors'' Uniform requirements for manuscripts.
期刊最新文献
A flame image soft sensor for oxygen content prediction based on denoising diffusion probabilistic model Prediction of potential antitumor components in Ganoderma lucidum: A combined approach using machine learning and molecular docking Spectra data calibration based on deep residual modeling of independent component regression Enhanced CO2 leak detection in soil: High-fidelity digital colorimetry with machine learning and ACES AP0 Quantitative structure properties relationship (QSPR) analysis for physicochemical properties of nonsteroidal anti-inflammatory drugs (NSAIDs) usingVe degree-based reducible topological indices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1