{"title":"跨组织和细胞的骨骼基因组研究取得进展","authors":"Genevieve Housman","doi":"10.1016/j.gde.2024.102245","DOIUrl":null,"url":null,"abstract":"<div><p>Phenotypic variation within the skeleton has biological, behavioral, and biomedical functional implications for individuals and species. Thus, it is critical to understand how genomic, environmental, and mediating regulatory factors combine and interact to drive skeletal trait development and evolution. Recent research efforts to clarify these mechanisms have been made possible by expanded collections of genomic and phenotypic data from <em>in vivo</em> skeletal tissues, as well as the development of relevant <em>in vitro</em> skeletal cell culture systems. This review outlines this current work and recommends that continued exploration of this complexity should include an increased focus on how interactions between genomic and physiologically relevant contexts contribute to skeletal trait variation at population and evolutionary scales.</p></div>","PeriodicalId":50606,"journal":{"name":"Current Opinion in Genetics & Development","volume":"88 ","pages":"Article 102245"},"PeriodicalIF":3.7000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0959437X24000947/pdfft?md5=dc8f4465356de6f5ec2b769754b11bbf&pid=1-s2.0-S0959437X24000947-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Advances in skeletal genomics research across tissues and cells\",\"authors\":\"Genevieve Housman\",\"doi\":\"10.1016/j.gde.2024.102245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Phenotypic variation within the skeleton has biological, behavioral, and biomedical functional implications for individuals and species. Thus, it is critical to understand how genomic, environmental, and mediating regulatory factors combine and interact to drive skeletal trait development and evolution. Recent research efforts to clarify these mechanisms have been made possible by expanded collections of genomic and phenotypic data from <em>in vivo</em> skeletal tissues, as well as the development of relevant <em>in vitro</em> skeletal cell culture systems. This review outlines this current work and recommends that continued exploration of this complexity should include an increased focus on how interactions between genomic and physiologically relevant contexts contribute to skeletal trait variation at population and evolutionary scales.</p></div>\",\"PeriodicalId\":50606,\"journal\":{\"name\":\"Current Opinion in Genetics & Development\",\"volume\":\"88 \",\"pages\":\"Article 102245\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0959437X24000947/pdfft?md5=dc8f4465356de6f5ec2b769754b11bbf&pid=1-s2.0-S0959437X24000947-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Genetics & Development\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0959437X24000947\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Genetics & Development","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959437X24000947","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Advances in skeletal genomics research across tissues and cells
Phenotypic variation within the skeleton has biological, behavioral, and biomedical functional implications for individuals and species. Thus, it is critical to understand how genomic, environmental, and mediating regulatory factors combine and interact to drive skeletal trait development and evolution. Recent research efforts to clarify these mechanisms have been made possible by expanded collections of genomic and phenotypic data from in vivo skeletal tissues, as well as the development of relevant in vitro skeletal cell culture systems. This review outlines this current work and recommends that continued exploration of this complexity should include an increased focus on how interactions between genomic and physiologically relevant contexts contribute to skeletal trait variation at population and evolutionary scales.
期刊介绍:
Current Opinion in Genetics and Development aims to stimulate scientifically grounded, interdisciplinary, multi-scale debate and exchange of ideas. It contains polished, concise and timely reviews and opinions, with particular emphasis on those articles published in the past two years. In addition to describing recent trends, the authors are encouraged to give their subjective opinion of the topics discussed.
In Current Opinion in Genetics and Development we help the reader by providing in a systematic manner:
1. The views of experts on current advances in their field in a clear and readable form.
2. Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications.[...]
The subject of Genetics and Development is divided into six themed sections, each of which is reviewed once a year:
• Cancer Genomics
• Genome Architecture and Expression
• Molecular and genetic basis of disease
• Developmental mechanisms, patterning and evolution
• Cell reprogramming, regeneration and repair
• Genetics of Human Origin / Evolutionary genetics (alternate years)