Zhihao Zhang , Dongliang Zhang , Kai Su , Dongqiang Wu , Qiqi Hu , Tianying Jin , Tingting Ye , Rongrong Zhang
{"title":"NTSR1 通过 Wnt/β-catenin 通路促进肺腺癌的上皮-间质转化和转移","authors":"Zhihao Zhang , Dongliang Zhang , Kai Su , Dongqiang Wu , Qiqi Hu , Tianying Jin , Tingting Ye , Rongrong Zhang","doi":"10.1016/j.mrfmmm.2024.111877","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Lung adenocarcinoma (LUAD) patients are implicated in poor prognoses and increased mortality rates. Metastasis, as a leading cause of LUAD-related deaths, requires further investigation. Highly metastatic cancer cells often exhibit extensive characteristics of epithelial-mesenchymal transition (EMT). This study attempted to identify novel targets associated with LUAD metastasis and validate their specific molecular mechanisms.</p></div><div><h3>Methods</h3><p>Bioinformatics was conducted to determine NTSR1 expression in LUAD and the enriched pathways. Immunohistochemical analysis was used to assess NTSR1 expression in LUAD tissue. qRT-PCR examined expressions of NTSR1 and Wnt/β-Catenin pathway-related genes in LUAD cells. Transwell assayed cell migration and invasion. Cell adhesion experiments were conducted to evaluate cell adhesion capacity. Western blot analysis was employed to examine expression of EMT, Wnt/β-Catenin pathway, and cell adhesion markers.</p></div><div><h3>Results</h3><p>NTSR1 was upregulated in LUAD tissues and cells, and enriched in EMT pathway. Knockdown of NTSR1 reduced migration, invasion, and adhesion abilities in LUAD cells, and inhibited EMT progression and Wnt/β-Catenin pathway. Rescue experiments demonstrated that β-Catenin activator SKL2001 reversed repressive influence of NTSR1 knockdown on LUAD cell malignant phenotypes and EMT progression.</p></div><div><h3>Conclusion</h3><p>The data obtained in this study suggested that NTSR1 stimulated EMT and metastasis in LUAD via Wnt/β-Catenin pathway. This finding may provide options for overcoming LUAD metastasis.</p></div>","PeriodicalId":49790,"journal":{"name":"Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis","volume":"829 ","pages":"Article 111877"},"PeriodicalIF":1.5000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NTSR1 promotes epithelial-mesenchymal transition and metastasis in lung adenocarcinoma through the Wnt/β-catenin pathway\",\"authors\":\"Zhihao Zhang , Dongliang Zhang , Kai Su , Dongqiang Wu , Qiqi Hu , Tianying Jin , Tingting Ye , Rongrong Zhang\",\"doi\":\"10.1016/j.mrfmmm.2024.111877\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Lung adenocarcinoma (LUAD) patients are implicated in poor prognoses and increased mortality rates. Metastasis, as a leading cause of LUAD-related deaths, requires further investigation. Highly metastatic cancer cells often exhibit extensive characteristics of epithelial-mesenchymal transition (EMT). This study attempted to identify novel targets associated with LUAD metastasis and validate their specific molecular mechanisms.</p></div><div><h3>Methods</h3><p>Bioinformatics was conducted to determine NTSR1 expression in LUAD and the enriched pathways. Immunohistochemical analysis was used to assess NTSR1 expression in LUAD tissue. qRT-PCR examined expressions of NTSR1 and Wnt/β-Catenin pathway-related genes in LUAD cells. Transwell assayed cell migration and invasion. Cell adhesion experiments were conducted to evaluate cell adhesion capacity. Western blot analysis was employed to examine expression of EMT, Wnt/β-Catenin pathway, and cell adhesion markers.</p></div><div><h3>Results</h3><p>NTSR1 was upregulated in LUAD tissues and cells, and enriched in EMT pathway. Knockdown of NTSR1 reduced migration, invasion, and adhesion abilities in LUAD cells, and inhibited EMT progression and Wnt/β-Catenin pathway. Rescue experiments demonstrated that β-Catenin activator SKL2001 reversed repressive influence of NTSR1 knockdown on LUAD cell malignant phenotypes and EMT progression.</p></div><div><h3>Conclusion</h3><p>The data obtained in this study suggested that NTSR1 stimulated EMT and metastasis in LUAD via Wnt/β-Catenin pathway. This finding may provide options for overcoming LUAD metastasis.</p></div>\",\"PeriodicalId\":49790,\"journal\":{\"name\":\"Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis\",\"volume\":\"829 \",\"pages\":\"Article 111877\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0027510724000277\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0027510724000277","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
NTSR1 promotes epithelial-mesenchymal transition and metastasis in lung adenocarcinoma through the Wnt/β-catenin pathway
Background
Lung adenocarcinoma (LUAD) patients are implicated in poor prognoses and increased mortality rates. Metastasis, as a leading cause of LUAD-related deaths, requires further investigation. Highly metastatic cancer cells often exhibit extensive characteristics of epithelial-mesenchymal transition (EMT). This study attempted to identify novel targets associated with LUAD metastasis and validate their specific molecular mechanisms.
Methods
Bioinformatics was conducted to determine NTSR1 expression in LUAD and the enriched pathways. Immunohistochemical analysis was used to assess NTSR1 expression in LUAD tissue. qRT-PCR examined expressions of NTSR1 and Wnt/β-Catenin pathway-related genes in LUAD cells. Transwell assayed cell migration and invasion. Cell adhesion experiments were conducted to evaluate cell adhesion capacity. Western blot analysis was employed to examine expression of EMT, Wnt/β-Catenin pathway, and cell adhesion markers.
Results
NTSR1 was upregulated in LUAD tissues and cells, and enriched in EMT pathway. Knockdown of NTSR1 reduced migration, invasion, and adhesion abilities in LUAD cells, and inhibited EMT progression and Wnt/β-Catenin pathway. Rescue experiments demonstrated that β-Catenin activator SKL2001 reversed repressive influence of NTSR1 knockdown on LUAD cell malignant phenotypes and EMT progression.
Conclusion
The data obtained in this study suggested that NTSR1 stimulated EMT and metastasis in LUAD via Wnt/β-Catenin pathway. This finding may provide options for overcoming LUAD metastasis.
期刊介绍:
Mutation Research (MR) provides a platform for publishing all aspects of DNA mutations and epimutations, from basic evolutionary aspects to translational applications in genetic and epigenetic diagnostics and therapy. Mutations are defined as all possible alterations in DNA sequence and sequence organization, from point mutations to genome structural variation, chromosomal aberrations and aneuploidy. Epimutations are defined as alterations in the epigenome, i.e., changes in DNA methylation, histone modification and small regulatory RNAs.
MR publishes articles in the following areas:
Of special interest are basic mechanisms through which DNA damage and mutations impact development and differentiation, stem cell biology and cell fate in general, including various forms of cell death and cellular senescence.
The study of genome instability in human molecular epidemiology and in relation to complex phenotypes, such as human disease, is considered a growing area of importance.
Mechanisms of (epi)mutation induction, for example, during DNA repair, replication or recombination; novel methods of (epi)mutation detection, with a focus on ultra-high-throughput sequencing.
Landscape of somatic mutations and epimutations in cancer and aging.
Role of de novo mutations in human disease and aging; mutations in population genomics.
Interactions between mutations and epimutations.
The role of epimutations in chromatin structure and function.
Mitochondrial DNA mutations and their consequences in terms of human disease and aging.
Novel ways to generate mutations and epimutations in cell lines and animal models.