Jean Ye, Kathleen A. Garrison, Cheryl Lacadie, Marc N. Potenza, Rajita Sinha, Elizabeth V. Goldfarb, Dustin Scheinost
{"title":"网络状态动力学是跨诊断人群基础渴求的基础","authors":"Jean Ye, Kathleen A. Garrison, Cheryl Lacadie, Marc N. Potenza, Rajita Sinha, Elizabeth V. Goldfarb, Dustin Scheinost","doi":"10.1038/s41380-024-02708-0","DOIUrl":null,"url":null,"abstract":"<p>Emerging fMRI methods quantifying brain dynamics present an opportunity to capture how fluctuations in brain responses give rise to individual variations in affective and motivation states. Although the experience and regulation of affective states affect psychopathology, their underlying time-varying brain responses remain unclear. Here, we present a novel framework to identify network states matched to an affective experience and examine how the dynamic engagement of these network states contributes to this experience. We apply this framework to investigate network state dynamics underlying basal craving, an affective experience with important clinical implications. In a transdiagnostic sample of healthy controls and individuals diagnosed with or at risk for craving-related disorders (total <i>N</i> = 252), we utilized connectome-based predictive modeling (CPM) to identify brain networks predictive of basal craving. An edge-centric timeseries approach was leveraged to quantify the moment-to-moment engagement of the craving-positive and craving-negative subnetworks during independent scan runs. We found that dynamic markers of network engagement, namely more persistence in a craving-positive network state and less dwelling in a craving-negative network state, characterized individuals with higher craving. We replicated the latter results in a separate dataset, incorporating distinct participants (<i>N</i> = 173) and experimental stimuli. The associations between basal craving and network state dynamics were consistently observed even when craving-predictive networks were defined in the replication dataset. These robust findings suggest that network state dynamics underpin individual differences in basal craving. Our framework additionally presents a new avenue to explore how the moment-to-moment engagement of behaviorally meaningful network states supports our affective experiences.</p>","PeriodicalId":19008,"journal":{"name":"Molecular Psychiatry","volume":null,"pages":null},"PeriodicalIF":9.6000,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Network state dynamics underpin basal craving in a transdiagnostic population\",\"authors\":\"Jean Ye, Kathleen A. Garrison, Cheryl Lacadie, Marc N. Potenza, Rajita Sinha, Elizabeth V. Goldfarb, Dustin Scheinost\",\"doi\":\"10.1038/s41380-024-02708-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Emerging fMRI methods quantifying brain dynamics present an opportunity to capture how fluctuations in brain responses give rise to individual variations in affective and motivation states. Although the experience and regulation of affective states affect psychopathology, their underlying time-varying brain responses remain unclear. Here, we present a novel framework to identify network states matched to an affective experience and examine how the dynamic engagement of these network states contributes to this experience. We apply this framework to investigate network state dynamics underlying basal craving, an affective experience with important clinical implications. In a transdiagnostic sample of healthy controls and individuals diagnosed with or at risk for craving-related disorders (total <i>N</i> = 252), we utilized connectome-based predictive modeling (CPM) to identify brain networks predictive of basal craving. An edge-centric timeseries approach was leveraged to quantify the moment-to-moment engagement of the craving-positive and craving-negative subnetworks during independent scan runs. We found that dynamic markers of network engagement, namely more persistence in a craving-positive network state and less dwelling in a craving-negative network state, characterized individuals with higher craving. We replicated the latter results in a separate dataset, incorporating distinct participants (<i>N</i> = 173) and experimental stimuli. The associations between basal craving and network state dynamics were consistently observed even when craving-predictive networks were defined in the replication dataset. These robust findings suggest that network state dynamics underpin individual differences in basal craving. Our framework additionally presents a new avenue to explore how the moment-to-moment engagement of behaviorally meaningful network states supports our affective experiences.</p>\",\"PeriodicalId\":19008,\"journal\":{\"name\":\"Molecular Psychiatry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2024-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Psychiatry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41380-024-02708-0\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41380-024-02708-0","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Network state dynamics underpin basal craving in a transdiagnostic population
Emerging fMRI methods quantifying brain dynamics present an opportunity to capture how fluctuations in brain responses give rise to individual variations in affective and motivation states. Although the experience and regulation of affective states affect psychopathology, their underlying time-varying brain responses remain unclear. Here, we present a novel framework to identify network states matched to an affective experience and examine how the dynamic engagement of these network states contributes to this experience. We apply this framework to investigate network state dynamics underlying basal craving, an affective experience with important clinical implications. In a transdiagnostic sample of healthy controls and individuals diagnosed with or at risk for craving-related disorders (total N = 252), we utilized connectome-based predictive modeling (CPM) to identify brain networks predictive of basal craving. An edge-centric timeseries approach was leveraged to quantify the moment-to-moment engagement of the craving-positive and craving-negative subnetworks during independent scan runs. We found that dynamic markers of network engagement, namely more persistence in a craving-positive network state and less dwelling in a craving-negative network state, characterized individuals with higher craving. We replicated the latter results in a separate dataset, incorporating distinct participants (N = 173) and experimental stimuli. The associations between basal craving and network state dynamics were consistently observed even when craving-predictive networks were defined in the replication dataset. These robust findings suggest that network state dynamics underpin individual differences in basal craving. Our framework additionally presents a new avenue to explore how the moment-to-moment engagement of behaviorally meaningful network states supports our affective experiences.
期刊介绍:
Molecular Psychiatry focuses on publishing research that aims to uncover the biological mechanisms behind psychiatric disorders and their treatment. The journal emphasizes studies that bridge pre-clinical and clinical research, covering cellular, molecular, integrative, clinical, imaging, and psychopharmacology levels.