{"title":"用于生物样本中 \"关闭-开启 \"抗肿瘤 5-氟尿嘧啶传感的藻酸盐衍生碳点。","authors":"Sasan Abbasi Majd, Soheila Kashanian, Mahsa Babaei, Zahra Shekarbeygi","doi":"10.1002/bab.2659","DOIUrl":null,"url":null,"abstract":"<p><p>As a chemotherapy drug, 5-fluorouracil (5-FU) has been used for colon cancer for decades. Excessive levels of 5-FU in the human body can lead to notable adverse effects, including severe diarrhea, infection, mouth sores, skin peeling, skin inflammation, and ulcers, which are important and relatively common digestive side effects. In addition, 5-FU is an analog of uracil and also has similarities to pyrimidines. Therefore, it is not easy to separate them. This research presented a sensor capable of detecting drugs in minimal amounts. An alginate-derived carbon dot (CD) was synthesized by unique optical properties that obey an on-off fluorescence mechanism for 5-FU sensing. Introducing copper (Cu(I)) to CDs results in fluorescence quenching through electron transfer. However, when 5-FU is added to the system as an oxidizing agent, a redox reaction occurs on the surface of the CDs, which leads to the restoration of fluorescence as Cu(I) is altered to Cu(II). Experimental results showed a strong linear correlation (R<sup>2</sup> = 0.99) in the concentration range of 1.00-45.00 nM, with the following linear regression, and revealed the relative standard deviation (RSD%) and detection limit of 2.57%, and 1.00 nM, respectively. These results validated the excellent detection capability of the proposed method even at low concentrations of 5-FU and in the presence of other drugs and interfering substances. Also, the recovery of 5-FU (varies from 100.46% to 113.7%, with RSD equal to 1.89-3.63) in serum samples indicates the absence of matrix interference in the determination of 5-FU. In summary, this novel approach to developing a cost-effective and sensitive sensor holds great potential for future applications in healthcare and related fields.</p>","PeriodicalId":9274,"journal":{"name":"Biotechnology and applied biochemistry","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Alginate-derived carbon dots for \\\"turn off-on\\\" anti-neoplastic 5-fluorouracil sensing in biological samples.\",\"authors\":\"Sasan Abbasi Majd, Soheila Kashanian, Mahsa Babaei, Zahra Shekarbeygi\",\"doi\":\"10.1002/bab.2659\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>As a chemotherapy drug, 5-fluorouracil (5-FU) has been used for colon cancer for decades. Excessive levels of 5-FU in the human body can lead to notable adverse effects, including severe diarrhea, infection, mouth sores, skin peeling, skin inflammation, and ulcers, which are important and relatively common digestive side effects. In addition, 5-FU is an analog of uracil and also has similarities to pyrimidines. Therefore, it is not easy to separate them. This research presented a sensor capable of detecting drugs in minimal amounts. An alginate-derived carbon dot (CD) was synthesized by unique optical properties that obey an on-off fluorescence mechanism for 5-FU sensing. Introducing copper (Cu(I)) to CDs results in fluorescence quenching through electron transfer. However, when 5-FU is added to the system as an oxidizing agent, a redox reaction occurs on the surface of the CDs, which leads to the restoration of fluorescence as Cu(I) is altered to Cu(II). Experimental results showed a strong linear correlation (R<sup>2</sup> = 0.99) in the concentration range of 1.00-45.00 nM, with the following linear regression, and revealed the relative standard deviation (RSD%) and detection limit of 2.57%, and 1.00 nM, respectively. These results validated the excellent detection capability of the proposed method even at low concentrations of 5-FU and in the presence of other drugs and interfering substances. Also, the recovery of 5-FU (varies from 100.46% to 113.7%, with RSD equal to 1.89-3.63) in serum samples indicates the absence of matrix interference in the determination of 5-FU. In summary, this novel approach to developing a cost-effective and sensitive sensor holds great potential for future applications in healthcare and related fields.</p>\",\"PeriodicalId\":9274,\"journal\":{\"name\":\"Biotechnology and applied biochemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology and applied biochemistry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/bab.2659\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology and applied biochemistry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/bab.2659","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Alginate-derived carbon dots for "turn off-on" anti-neoplastic 5-fluorouracil sensing in biological samples.
As a chemotherapy drug, 5-fluorouracil (5-FU) has been used for colon cancer for decades. Excessive levels of 5-FU in the human body can lead to notable adverse effects, including severe diarrhea, infection, mouth sores, skin peeling, skin inflammation, and ulcers, which are important and relatively common digestive side effects. In addition, 5-FU is an analog of uracil and also has similarities to pyrimidines. Therefore, it is not easy to separate them. This research presented a sensor capable of detecting drugs in minimal amounts. An alginate-derived carbon dot (CD) was synthesized by unique optical properties that obey an on-off fluorescence mechanism for 5-FU sensing. Introducing copper (Cu(I)) to CDs results in fluorescence quenching through electron transfer. However, when 5-FU is added to the system as an oxidizing agent, a redox reaction occurs on the surface of the CDs, which leads to the restoration of fluorescence as Cu(I) is altered to Cu(II). Experimental results showed a strong linear correlation (R2 = 0.99) in the concentration range of 1.00-45.00 nM, with the following linear regression, and revealed the relative standard deviation (RSD%) and detection limit of 2.57%, and 1.00 nM, respectively. These results validated the excellent detection capability of the proposed method even at low concentrations of 5-FU and in the presence of other drugs and interfering substances. Also, the recovery of 5-FU (varies from 100.46% to 113.7%, with RSD equal to 1.89-3.63) in serum samples indicates the absence of matrix interference in the determination of 5-FU. In summary, this novel approach to developing a cost-effective and sensitive sensor holds great potential for future applications in healthcare and related fields.
期刊介绍:
Published since 1979, Biotechnology and Applied Biochemistry is dedicated to the rapid publication of high quality, significant research at the interface between life sciences and their technological exploitation.
The Editors will consider papers for publication based on their novelty and impact as well as their contribution to the advancement of medical biotechnology and industrial biotechnology, covering cutting-edge research in synthetic biology, systems biology, metabolic engineering, bioengineering, biomaterials, biosensing, and nano-biotechnology.