{"title":"在 Niosomes 中封装重组 Alpha-Luffin 的配方、特征和潜在治疗意义。","authors":"Hajar Abedi Joni, Fariba Esmaeili, Behnaz Landi, Elham Bayat, Haleh Bakhshandeh, Yeganeh Talebkhan, Farzaneh Barkhordari, Somayeh Sadeghi, Leila Nematollahi, Babak Negahdari","doi":"10.2174/0113892010316435240806053230","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>The anticancer properties of recombinant α-luffin (LUF) are wellestablished. However, the cytotoxic effects of encapsulating LUF within niosomes on the SKBR3 breast cancer cell line have yet to be explored. Our study aimed to investigate whether this encapsulation strategy could improve cytotoxic effects.</p><p><strong>Methods: </strong>Alpha-luffin was expressed, purified, and refolded. Then, this protein was utilized to craft an optimal formulation, guided by experimental design. In this work, we have explored various physicochemical properties, including particle size, polydispersity index, zeta potential, morphology, entrapment efficiency, drug release and kinetics, storage stability, and FTIR spectroscopy. Additionally, we have assessed the cellular uptake and cytotoxic effect of the optimized niosome formulation on the SKBR3 breast cancer cell line.</p><p><strong>Results: </strong>The optimized niosome exhibited a mean diameter of 315±6.4 nm (DLS). Successful encapsulation of LUF into regularly shaped, spherical niosomes was achieved, with an encapsulation efficiency of 73.45±2.4%. Notably, Niosomal LUF (NLUF) exhibited significantly increased cytotoxicity against SKBR3 cells.</p><p><strong>Conclusion: </strong>These findings suggest that niosomes loaded with LUF hold promise as a potential treatment strategy for breast cancer.</p>","PeriodicalId":10881,"journal":{"name":"Current pharmaceutical biotechnology","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Formulation, Characterization, and Potential Therapeutic Implications of Encapsulated Recombinant Alpha-Luffin in Niosomes.\",\"authors\":\"Hajar Abedi Joni, Fariba Esmaeili, Behnaz Landi, Elham Bayat, Haleh Bakhshandeh, Yeganeh Talebkhan, Farzaneh Barkhordari, Somayeh Sadeghi, Leila Nematollahi, Babak Negahdari\",\"doi\":\"10.2174/0113892010316435240806053230\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>The anticancer properties of recombinant α-luffin (LUF) are wellestablished. However, the cytotoxic effects of encapsulating LUF within niosomes on the SKBR3 breast cancer cell line have yet to be explored. Our study aimed to investigate whether this encapsulation strategy could improve cytotoxic effects.</p><p><strong>Methods: </strong>Alpha-luffin was expressed, purified, and refolded. Then, this protein was utilized to craft an optimal formulation, guided by experimental design. In this work, we have explored various physicochemical properties, including particle size, polydispersity index, zeta potential, morphology, entrapment efficiency, drug release and kinetics, storage stability, and FTIR spectroscopy. Additionally, we have assessed the cellular uptake and cytotoxic effect of the optimized niosome formulation on the SKBR3 breast cancer cell line.</p><p><strong>Results: </strong>The optimized niosome exhibited a mean diameter of 315±6.4 nm (DLS). Successful encapsulation of LUF into regularly shaped, spherical niosomes was achieved, with an encapsulation efficiency of 73.45±2.4%. Notably, Niosomal LUF (NLUF) exhibited significantly increased cytotoxicity against SKBR3 cells.</p><p><strong>Conclusion: </strong>These findings suggest that niosomes loaded with LUF hold promise as a potential treatment strategy for breast cancer.</p>\",\"PeriodicalId\":10881,\"journal\":{\"name\":\"Current pharmaceutical biotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current pharmaceutical biotechnology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0113892010316435240806053230\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current pharmaceutical biotechnology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113892010316435240806053230","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Formulation, Characterization, and Potential Therapeutic Implications of Encapsulated Recombinant Alpha-Luffin in Niosomes.
Objective: The anticancer properties of recombinant α-luffin (LUF) are wellestablished. However, the cytotoxic effects of encapsulating LUF within niosomes on the SKBR3 breast cancer cell line have yet to be explored. Our study aimed to investigate whether this encapsulation strategy could improve cytotoxic effects.
Methods: Alpha-luffin was expressed, purified, and refolded. Then, this protein was utilized to craft an optimal formulation, guided by experimental design. In this work, we have explored various physicochemical properties, including particle size, polydispersity index, zeta potential, morphology, entrapment efficiency, drug release and kinetics, storage stability, and FTIR spectroscopy. Additionally, we have assessed the cellular uptake and cytotoxic effect of the optimized niosome formulation on the SKBR3 breast cancer cell line.
Results: The optimized niosome exhibited a mean diameter of 315±6.4 nm (DLS). Successful encapsulation of LUF into regularly shaped, spherical niosomes was achieved, with an encapsulation efficiency of 73.45±2.4%. Notably, Niosomal LUF (NLUF) exhibited significantly increased cytotoxicity against SKBR3 cells.
Conclusion: These findings suggest that niosomes loaded with LUF hold promise as a potential treatment strategy for breast cancer.
期刊介绍:
Current Pharmaceutical Biotechnology aims to cover all the latest and outstanding developments in Pharmaceutical Biotechnology. Each issue of the journal includes timely in-depth reviews, original research articles and letters written by leaders in the field, covering a range of current topics in scientific areas of Pharmaceutical Biotechnology. Invited and unsolicited review articles are welcome. The journal encourages contributions describing research at the interface of drug discovery and pharmacological applications, involving in vitro investigations and pre-clinical or clinical studies. Scientific areas within the scope of the journal include pharmaceutical chemistry, biochemistry and genetics, molecular and cellular biology, and polymer and materials sciences as they relate to pharmaceutical science and biotechnology. In addition, the journal also considers comprehensive studies and research advances pertaining food chemistry with pharmaceutical implication. Areas of interest include:
DNA/protein engineering and processing
Synthetic biotechnology
Omics (genomics, proteomics, metabolomics and systems biology)
Therapeutic biotechnology (gene therapy, peptide inhibitors, enzymes)
Drug delivery and targeting
Nanobiotechnology
Molecular pharmaceutics and molecular pharmacology
Analytical biotechnology (biosensing, advanced technology for detection of bioanalytes)
Pharmacokinetics and pharmacodynamics
Applied Microbiology
Bioinformatics (computational biopharmaceutics and modeling)
Environmental biotechnology
Regenerative medicine (stem cells, tissue engineering and biomaterials)
Translational immunology (cell therapies, antibody engineering, xenotransplantation)
Industrial bioprocesses for drug production and development
Biosafety
Biotech ethics
Special Issues devoted to crucial topics, providing the latest comprehensive information on cutting-edge areas of research and technological advances, are welcome.
Current Pharmaceutical Biotechnology is an essential journal for academic, clinical, government and pharmaceutical scientists who wish to be kept informed and up-to-date with the latest and most important developments.