辨别跑步和慢跑主动心理模拟的大脑机制

IF 3.5 2区 医学 Q1 NEUROIMAGING Human Brain Mapping Pub Date : 2024-08-26 DOI:10.1002/hbm.26807
Roxane Philips, Chris Baeken, Joël Billieux, James Madog Harris, Pierre Maurage, Ismael Muela, İrem Tuğçe Öz, Arthur Pabst, Guillaume Sescousse, Claus Vögele, Damien Brevers
{"title":"辨别跑步和慢跑主动心理模拟的大脑机制","authors":"Roxane Philips,&nbsp;Chris Baeken,&nbsp;Joël Billieux,&nbsp;James Madog Harris,&nbsp;Pierre Maurage,&nbsp;Ismael Muela,&nbsp;İrem Tuğçe Öz,&nbsp;Arthur Pabst,&nbsp;Guillaume Sescousse,&nbsp;Claus Vögele,&nbsp;Damien Brevers","doi":"10.1002/hbm.26807","DOIUrl":null,"url":null,"abstract":"<p>Enactive cognition emphasizes co-constructive roles of humans and their environment in shaping cognitive processes. It is specifically engaged in the mental simulation of behaviors, enhancing the connection between perception and action. Here we investigated the core network of brain regions involved in enactive cognition as applied to mental simulations of physical exercise. We used a neuroimaging paradigm in which participants (<i>N</i> = 103) were required to project themselves running or plogging (running while picking-up litter) along an image-guided naturalistic trail. Using both univariate and multivariate brain imaging analyses, we find that a broad spectrum of brain activation discriminates between the mental simulation of plogging versus running. Critically, we show that self-reported ratings of daily life running engagement and the quality of mental simulation (how well participants were able to imagine themselves running) modulate the brain reactivity to plogging versus running. Finally, we undertook functional connectivity analyses centered on the insular cortex, which is a key region in the dynamic interplay between neurocognitive processes. This analysis revealed increased positive and negative patterns of insular-centered functional connectivity in the plogging condition (as compared to the running condition), thereby confirming the key role of the insular cortex in action simulation involving complex sets of mental mechanisms. Taken together, the present findings provide new insights into the brain networks involved in the enactive mental simulation of physical exercise.</p>","PeriodicalId":13019,"journal":{"name":"Human Brain Mapping","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hbm.26807","citationCount":"0","resultStr":"{\"title\":\"Brain mechanisms discriminating enactive mental simulations of running and plogging\",\"authors\":\"Roxane Philips,&nbsp;Chris Baeken,&nbsp;Joël Billieux,&nbsp;James Madog Harris,&nbsp;Pierre Maurage,&nbsp;Ismael Muela,&nbsp;İrem Tuğçe Öz,&nbsp;Arthur Pabst,&nbsp;Guillaume Sescousse,&nbsp;Claus Vögele,&nbsp;Damien Brevers\",\"doi\":\"10.1002/hbm.26807\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Enactive cognition emphasizes co-constructive roles of humans and their environment in shaping cognitive processes. It is specifically engaged in the mental simulation of behaviors, enhancing the connection between perception and action. Here we investigated the core network of brain regions involved in enactive cognition as applied to mental simulations of physical exercise. We used a neuroimaging paradigm in which participants (<i>N</i> = 103) were required to project themselves running or plogging (running while picking-up litter) along an image-guided naturalistic trail. Using both univariate and multivariate brain imaging analyses, we find that a broad spectrum of brain activation discriminates between the mental simulation of plogging versus running. Critically, we show that self-reported ratings of daily life running engagement and the quality of mental simulation (how well participants were able to imagine themselves running) modulate the brain reactivity to plogging versus running. Finally, we undertook functional connectivity analyses centered on the insular cortex, which is a key region in the dynamic interplay between neurocognitive processes. This analysis revealed increased positive and negative patterns of insular-centered functional connectivity in the plogging condition (as compared to the running condition), thereby confirming the key role of the insular cortex in action simulation involving complex sets of mental mechanisms. Taken together, the present findings provide new insights into the brain networks involved in the enactive mental simulation of physical exercise.</p>\",\"PeriodicalId\":13019,\"journal\":{\"name\":\"Human Brain Mapping\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hbm.26807\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human Brain Mapping\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/hbm.26807\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROIMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Brain Mapping","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hbm.26807","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0

摘要

主动认知强调人与环境在塑造认知过程中的共同建构作用。它具体体现在对行为的心理模拟中,加强了感知与行动之间的联系。在这里,我们研究了应用于体育锻炼心理模拟的能动认知所涉及的核心脑区网络。我们采用了一种神经成像范式,要求参与者(103 人)预测自己沿着图像引导的自然小径跑步或慢跑(边跑边捡垃圾)。通过单变量和多变量脑成像分析,我们发现大脑激活的广泛范围可区分慢跑和跑步的心理模拟。重要的是,我们发现自我报告的日常生活跑步参与度评分和心理模拟的质量(参与者想象自己跑步的能力)会调节大脑对慢跑和跑步的反应。最后,我们以岛叶皮层为中心进行了功能连接分析,岛叶皮层是神经认知过程动态相互作用的关键区域。该分析表明,在慢跑状态下(与跑步状态相比),以岛叶为中心的正负功能连接模式增加,从而证实了岛叶皮层在涉及复杂心理机制的动作模拟中的关键作用。综上所述,本研究结果为我们提供了关于参与体育锻炼积极心理模拟的大脑网络的新见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Brain mechanisms discriminating enactive mental simulations of running and plogging

Enactive cognition emphasizes co-constructive roles of humans and their environment in shaping cognitive processes. It is specifically engaged in the mental simulation of behaviors, enhancing the connection between perception and action. Here we investigated the core network of brain regions involved in enactive cognition as applied to mental simulations of physical exercise. We used a neuroimaging paradigm in which participants (N = 103) were required to project themselves running or plogging (running while picking-up litter) along an image-guided naturalistic trail. Using both univariate and multivariate brain imaging analyses, we find that a broad spectrum of brain activation discriminates between the mental simulation of plogging versus running. Critically, we show that self-reported ratings of daily life running engagement and the quality of mental simulation (how well participants were able to imagine themselves running) modulate the brain reactivity to plogging versus running. Finally, we undertook functional connectivity analyses centered on the insular cortex, which is a key region in the dynamic interplay between neurocognitive processes. This analysis revealed increased positive and negative patterns of insular-centered functional connectivity in the plogging condition (as compared to the running condition), thereby confirming the key role of the insular cortex in action simulation involving complex sets of mental mechanisms. Taken together, the present findings provide new insights into the brain networks involved in the enactive mental simulation of physical exercise.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Human Brain Mapping
Human Brain Mapping 医学-核医学
CiteScore
8.30
自引率
6.20%
发文量
401
审稿时长
3-6 weeks
期刊介绍: Human Brain Mapping publishes peer-reviewed basic, clinical, technical, and theoretical research in the interdisciplinary and rapidly expanding field of human brain mapping. The journal features research derived from non-invasive brain imaging modalities used to explore the spatial and temporal organization of the neural systems supporting human behavior. Imaging modalities of interest include positron emission tomography, event-related potentials, electro-and magnetoencephalography, magnetic resonance imaging, and single-photon emission tomography. Brain mapping research in both normal and clinical populations is encouraged. Article formats include Research Articles, Review Articles, Clinical Case Studies, and Technique, as well as Technological Developments, Theoretical Articles, and Synthetic Reviews. Technical advances, such as novel brain imaging methods, analyses for detecting or localizing neural activity, synergistic uses of multiple imaging modalities, and strategies for the design of behavioral paradigms and neural-systems modeling are of particular interest. The journal endorses the propagation of methodological standards and encourages database development in the field of human brain mapping.
期刊最新文献
Alterations of Excitation–Inhibition Balance and Brain Network Dynamics Support Sensory Deprivation Theory in Presbycusis Characterization and Mitigation of a Simultaneous Multi-Slice fMRI Artifact: Multiband Artifact Regression in Simultaneous Slices Frontoparietal Structural Network Disconnections Correlate With Outcome After a Severe Stroke Olfactory Dysfunction and Limbic Hypoactivation in Temporal Lobe Epilepsy Pain-Discriminating Information Decoded From Spatiotemporal Patterns of Hemodynamic Responses Measured by fMRI in the Human Brain
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1