{"title":"Rosmarinus officinalis L.提取物对三阴性和Luminal A型乳腺癌的抑制潜力","authors":"Kamran Eghbalpour, Nahid Eghbalpour, Saideh Khademi, Laleh Arzi","doi":"10.22088/IJMCM.BUMS.13.2.198","DOIUrl":null,"url":null,"abstract":"<p><p>Rosemary is an aromatic plant with ancient and modern applications as a spice and herbal remedy. Due to the strong antioxidant potential of rosemary, the present study investigated the anti-proliferative and pro-apoptotic characteristics of rosemary on luminal A and triple-negative breast cancer cells. The effect of rosemary extract on the WNT10B and β-Catenin genes was also evaluated. The WNT10B and β-Catenin expression were measured by real-time PCR. The outcomes of the MTT assay and AnnexinV/PI flow cytometry assay showed that exposure of MCF-7 and MDA-MB-231 cells to rosemary reduced cell viability in a dose-time-dependent routine and promoted apoptosis in breast cancer cells. It was revealed that the extract could exert cytotoxic and apoptotic effects by downregulation of WNT10B and β-Catenin. Our results suggest rosemary as a promising complementary herbal medicine for breast cancers, without the adverse effects of chemotherapy drugs.</p>","PeriodicalId":14152,"journal":{"name":"International Journal of Molecular and Cellular Medicine","volume":"13 2","pages":"198-209"},"PeriodicalIF":1.5000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11344568/pdf/","citationCount":"0","resultStr":"{\"title\":\"Suppressive Potential of <i>Rosmarinus officinalis</i> L. Extract against Triple-Negative and Luminal A Breast Cancer.\",\"authors\":\"Kamran Eghbalpour, Nahid Eghbalpour, Saideh Khademi, Laleh Arzi\",\"doi\":\"10.22088/IJMCM.BUMS.13.2.198\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Rosemary is an aromatic plant with ancient and modern applications as a spice and herbal remedy. Due to the strong antioxidant potential of rosemary, the present study investigated the anti-proliferative and pro-apoptotic characteristics of rosemary on luminal A and triple-negative breast cancer cells. The effect of rosemary extract on the WNT10B and β-Catenin genes was also evaluated. The WNT10B and β-Catenin expression were measured by real-time PCR. The outcomes of the MTT assay and AnnexinV/PI flow cytometry assay showed that exposure of MCF-7 and MDA-MB-231 cells to rosemary reduced cell viability in a dose-time-dependent routine and promoted apoptosis in breast cancer cells. It was revealed that the extract could exert cytotoxic and apoptotic effects by downregulation of WNT10B and β-Catenin. Our results suggest rosemary as a promising complementary herbal medicine for breast cancers, without the adverse effects of chemotherapy drugs.</p>\",\"PeriodicalId\":14152,\"journal\":{\"name\":\"International Journal of Molecular and Cellular Medicine\",\"volume\":\"13 2\",\"pages\":\"198-209\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11344568/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Molecular and Cellular Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22088/IJMCM.BUMS.13.2.198\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Molecular and Cellular Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22088/IJMCM.BUMS.13.2.198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Suppressive Potential of Rosmarinus officinalis L. Extract against Triple-Negative and Luminal A Breast Cancer.
Rosemary is an aromatic plant with ancient and modern applications as a spice and herbal remedy. Due to the strong antioxidant potential of rosemary, the present study investigated the anti-proliferative and pro-apoptotic characteristics of rosemary on luminal A and triple-negative breast cancer cells. The effect of rosemary extract on the WNT10B and β-Catenin genes was also evaluated. The WNT10B and β-Catenin expression were measured by real-time PCR. The outcomes of the MTT assay and AnnexinV/PI flow cytometry assay showed that exposure of MCF-7 and MDA-MB-231 cells to rosemary reduced cell viability in a dose-time-dependent routine and promoted apoptosis in breast cancer cells. It was revealed that the extract could exert cytotoxic and apoptotic effects by downregulation of WNT10B and β-Catenin. Our results suggest rosemary as a promising complementary herbal medicine for breast cancers, without the adverse effects of chemotherapy drugs.
期刊介绍:
The International Journal of Molecular and Cellular Medicine (IJMCM) is a peer-reviewed, quarterly publication of Cellular and Molecular Biology Research Center (CMBRC), Babol University of Medical Sciences, Babol, Iran. The journal covers all cellular & molecular biology and medicine disciplines such as the genetic basis of disease, biomarker discovery in diagnosis and treatment, genomics and proteomics, bioinformatics, computer applications in human biology, stem cells and tissue engineering, medical biotechnology, nanomedicine, cellular processes related to growth, death and survival, clinical biochemistry, molecular & cellular immunology, molecular and cellular aspects of infectious disease and cancer research. IJMCM is a free access journal. All open access articles published in IJMCM are distributed under the terms of the Creative Commons Attribution CC BY. The journal doesn''t have any submission and article processing charges (APCs).