母体螺旋体感染导致雄性后代 B 细胞发育失调

IF 3.6 3区 医学 Q2 IMMUNOLOGY Journal of immunology Pub Date : 2024-10-15 DOI:10.4049/jimmunol.2400158
Lisa C Gibbs, Juan M Oviedo, Bartholomew N Ondigo, Keke C Fairfax
{"title":"母体螺旋体感染导致雄性后代 B 细胞发育失调","authors":"Lisa C Gibbs, Juan M Oviedo, Bartholomew N Ondigo, Keke C Fairfax","doi":"10.4049/jimmunol.2400158","DOIUrl":null,"url":null,"abstract":"<p><p>Infections during pregnancy are known to trigger alterations in offspring immunity, often leading to increased disease susceptibility. Maternal helminth infections correlate with lower Ab titers to certain childhood immunizations and putative decreased vaccine efficacy. The mechanisms that underlie how maternal infection blunts offspring humoral responses are unclear. Using our murine model of maternal schistosomiasis, we found that maternal helminth infection decreases the germinal center response of all offspring to tetanus immunization. However, only male offspring have defects in memory B cell and long-lived plasma cell generation. We found this sex-specific aberration begins during B cell development within the bone marrow via alteration of the IL-7 niche and persists throughout antigenic activation in the germinal center in the periphery. Critically, these defects in males are cell intrinsic, persisting following adoptive transfer to control male pups. Together, these data show that maternal infections can alter both the bone marrow microenvironment and the development of B lymphocytes in a sex-specific manner. This study correlates maternal infection induced defects in early life B cell development with ineffective Ab responses after vaccination.</p>","PeriodicalId":16045,"journal":{"name":"Journal of immunology","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11537230/pdf/","citationCount":"0","resultStr":"{\"title\":\"Maternal Helminth Infection Causes Dysfunctional B Cell Development in Male Offspring.\",\"authors\":\"Lisa C Gibbs, Juan M Oviedo, Bartholomew N Ondigo, Keke C Fairfax\",\"doi\":\"10.4049/jimmunol.2400158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Infections during pregnancy are known to trigger alterations in offspring immunity, often leading to increased disease susceptibility. Maternal helminth infections correlate with lower Ab titers to certain childhood immunizations and putative decreased vaccine efficacy. The mechanisms that underlie how maternal infection blunts offspring humoral responses are unclear. Using our murine model of maternal schistosomiasis, we found that maternal helminth infection decreases the germinal center response of all offspring to tetanus immunization. However, only male offspring have defects in memory B cell and long-lived plasma cell generation. We found this sex-specific aberration begins during B cell development within the bone marrow via alteration of the IL-7 niche and persists throughout antigenic activation in the germinal center in the periphery. Critically, these defects in males are cell intrinsic, persisting following adoptive transfer to control male pups. Together, these data show that maternal infections can alter both the bone marrow microenvironment and the development of B lymphocytes in a sex-specific manner. This study correlates maternal infection induced defects in early life B cell development with ineffective Ab responses after vaccination.</p>\",\"PeriodicalId\":16045,\"journal\":{\"name\":\"Journal of immunology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11537230/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of immunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.4049/jimmunol.2400158\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4049/jimmunol.2400158","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

众所周知,孕期感染会引发后代免疫力的改变,通常会导致对疾病的易感性增加。母体蠕虫感染与某些儿童免疫接种的 Ab 滴度较低和假定的疫苗效力降低有关。母体感染如何削弱后代体液反应的机制尚不清楚。利用母体血吸虫病小鼠模型,我们发现母体螺旋体感染会降低所有后代对破伤风免疫接种的生殖中心反应。然而,只有雄性后代在记忆 B 细胞和长寿命浆细胞生成方面存在缺陷。我们发现,这种性别特异性畸变始于骨髓内 B 细胞发育过程中 IL-7 龛的改变,并持续存在于外周生殖中心的整个抗原激活过程中。重要的是,雄性幼崽的这些缺陷是细胞固有的,在被收养转移到对照雄性幼崽后仍然存在。这些数据共同表明,母体感染能以性别特异性的方式改变骨髓微环境和 B 淋巴细胞的发育。这项研究将母体感染诱导的生命早期 B 细胞发育缺陷与接种疫苗后无效的 Ab 反应联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Maternal Helminth Infection Causes Dysfunctional B Cell Development in Male Offspring.

Infections during pregnancy are known to trigger alterations in offspring immunity, often leading to increased disease susceptibility. Maternal helminth infections correlate with lower Ab titers to certain childhood immunizations and putative decreased vaccine efficacy. The mechanisms that underlie how maternal infection blunts offspring humoral responses are unclear. Using our murine model of maternal schistosomiasis, we found that maternal helminth infection decreases the germinal center response of all offspring to tetanus immunization. However, only male offspring have defects in memory B cell and long-lived plasma cell generation. We found this sex-specific aberration begins during B cell development within the bone marrow via alteration of the IL-7 niche and persists throughout antigenic activation in the germinal center in the periphery. Critically, these defects in males are cell intrinsic, persisting following adoptive transfer to control male pups. Together, these data show that maternal infections can alter both the bone marrow microenvironment and the development of B lymphocytes in a sex-specific manner. This study correlates maternal infection induced defects in early life B cell development with ineffective Ab responses after vaccination.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of immunology
Journal of immunology 医学-免疫学
CiteScore
8.20
自引率
2.30%
发文量
495
审稿时长
1 months
期刊介绍: The JI publishes novel, peer-reviewed findings in all areas of experimental immunology, including innate and adaptive immunity, inflammation, host defense, clinical immunology, autoimmunity and more. Special sections include Cutting Edge articles, Brief Reviews and Pillars of Immunology. The JI is published by The American Association of Immunologists (AAI)
期刊最新文献
MARCH8 Mediates K27-Linked Polyubiquitination of IL-7 Receptor α to Negatively Regulate IL-7-Triggered T Cell Homeostasis. Developmental Vitamin D Deficiency and the Vitamin D Receptor Control Hematopoiesis. Integrins α5β1 and αvβ3 Differentially Participate in the Recruitment and Reprogramming of Tumor-associated Macrophages in the In Vitro and In Vivo Models of Breast Tumor. Microbe-binding Antibodies in the Female Genital Tract: Associations with the Vaginal Microbiome and Genital Immunology. Tim-3 Is Required for Regulatory T Cell-Mediated Promotion of T Cell Exhaustion and Viral Persistence during Chronic Lymphocytic Choriomeningitis Virus Infection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1