Xin Zhang, Ge Wang, Xiaoru Li, Yanqing Liu, Xue Wu, Yazhe Zhou, Jie Liu, Haiying Wang, Rui Jiao, Ying Chen, Qiang Wang
{"title":"LncRNA H19通过miR-148-3p/SOX-12轴促进胃癌转移","authors":"Xin Zhang, Ge Wang, Xiaoru Li, Yanqing Liu, Xue Wu, Yazhe Zhou, Jie Liu, Haiying Wang, Rui Jiao, Ying Chen, Qiang Wang","doi":"10.1155/2024/6217134","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Gastric cancer (GC) is the most common malignant tumor and ranks third in the world. LncRNA H19 (H19), one of the members of lncRNA, is overexpressed in various tumors. However, many undetermined molecular mechanisms by which H19 promotes GC progression still need to be further investigated. <i>Methodology</i>. A series of experiments was used to confirm the undetermined molecular mechanism including wound healing and transwell assays. <i>Key Results</i>. In this study, a significant upregulation of H19 expression was detected in GC cells and tissues. The poor overall survival was observed in GC patient with high H19 expression. Overexpression of H19 promoted the migration of GC cells, while knockdown of H19 significantly inhibited cell migration. Moreover, miR-148a-3p had a certain negative correlation with H19. Luciferase reporter assay confirmed that H19 could directly bind to miR-148a-3p. As expected, miR-148a mimics inhibited cell migration and invasion induced by H19 overexpression. The above findings proved that H19 functions as a miRNA sponge and verified that miR-148a-3p is the H19-associated miRNA in GC. We also confirmed that SOX-12 expression was upregulated in GC patient's samples. SOX-12 expression was positively correlated with expression of H19 and was able to directly bind to miR-148a-3p. Importantly, <i>in vitro</i> wound healing assay showed that knockout of SOX-12 could reverse the promoting effect of H19 overexpression on cell migration.</p><p><strong>Conclusion: </strong>In conclusion, H19 has certain application value in the diagnosis and prognosis of GC. Specifically, H19 accelerates GCs to migration and metastasis by miR-138a-3p/SOX-12 axis.</p>","PeriodicalId":49326,"journal":{"name":"Analytical Cellular Pathology","volume":"2024 ","pages":"6217134"},"PeriodicalIF":2.6000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11344645/pdf/","citationCount":"0","resultStr":"{\"title\":\"LncRNA H19 Promotes Gastric Cancer Metastasis via miR-148-3p/SOX-12 Axis.\",\"authors\":\"Xin Zhang, Ge Wang, Xiaoru Li, Yanqing Liu, Xue Wu, Yazhe Zhou, Jie Liu, Haiying Wang, Rui Jiao, Ying Chen, Qiang Wang\",\"doi\":\"10.1155/2024/6217134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Gastric cancer (GC) is the most common malignant tumor and ranks third in the world. LncRNA H19 (H19), one of the members of lncRNA, is overexpressed in various tumors. However, many undetermined molecular mechanisms by which H19 promotes GC progression still need to be further investigated. <i>Methodology</i>. A series of experiments was used to confirm the undetermined molecular mechanism including wound healing and transwell assays. <i>Key Results</i>. In this study, a significant upregulation of H19 expression was detected in GC cells and tissues. The poor overall survival was observed in GC patient with high H19 expression. Overexpression of H19 promoted the migration of GC cells, while knockdown of H19 significantly inhibited cell migration. Moreover, miR-148a-3p had a certain negative correlation with H19. Luciferase reporter assay confirmed that H19 could directly bind to miR-148a-3p. As expected, miR-148a mimics inhibited cell migration and invasion induced by H19 overexpression. The above findings proved that H19 functions as a miRNA sponge and verified that miR-148a-3p is the H19-associated miRNA in GC. We also confirmed that SOX-12 expression was upregulated in GC patient's samples. SOX-12 expression was positively correlated with expression of H19 and was able to directly bind to miR-148a-3p. Importantly, <i>in vitro</i> wound healing assay showed that knockout of SOX-12 could reverse the promoting effect of H19 overexpression on cell migration.</p><p><strong>Conclusion: </strong>In conclusion, H19 has certain application value in the diagnosis and prognosis of GC. Specifically, H19 accelerates GCs to migration and metastasis by miR-138a-3p/SOX-12 axis.</p>\",\"PeriodicalId\":49326,\"journal\":{\"name\":\"Analytical Cellular Pathology\",\"volume\":\"2024 \",\"pages\":\"6217134\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11344645/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical Cellular Pathology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/6217134\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Cellular Pathology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1155/2024/6217134","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
LncRNA H19 Promotes Gastric Cancer Metastasis via miR-148-3p/SOX-12 Axis.
Background: Gastric cancer (GC) is the most common malignant tumor and ranks third in the world. LncRNA H19 (H19), one of the members of lncRNA, is overexpressed in various tumors. However, many undetermined molecular mechanisms by which H19 promotes GC progression still need to be further investigated. Methodology. A series of experiments was used to confirm the undetermined molecular mechanism including wound healing and transwell assays. Key Results. In this study, a significant upregulation of H19 expression was detected in GC cells and tissues. The poor overall survival was observed in GC patient with high H19 expression. Overexpression of H19 promoted the migration of GC cells, while knockdown of H19 significantly inhibited cell migration. Moreover, miR-148a-3p had a certain negative correlation with H19. Luciferase reporter assay confirmed that H19 could directly bind to miR-148a-3p. As expected, miR-148a mimics inhibited cell migration and invasion induced by H19 overexpression. The above findings proved that H19 functions as a miRNA sponge and verified that miR-148a-3p is the H19-associated miRNA in GC. We also confirmed that SOX-12 expression was upregulated in GC patient's samples. SOX-12 expression was positively correlated with expression of H19 and was able to directly bind to miR-148a-3p. Importantly, in vitro wound healing assay showed that knockout of SOX-12 could reverse the promoting effect of H19 overexpression on cell migration.
Conclusion: In conclusion, H19 has certain application value in the diagnosis and prognosis of GC. Specifically, H19 accelerates GCs to migration and metastasis by miR-138a-3p/SOX-12 axis.
期刊介绍:
Analytical Cellular Pathology is a peer-reviewed, Open Access journal that provides a forum for scientists, medical practitioners and pathologists working in the area of cellular pathology. The journal publishes original research articles, review articles, and clinical studies related to cytology, carcinogenesis, cell receptors, biomarkers, diagnostic pathology, immunopathology, and hematology.