SFT-SGAT:用于情感识别和意识检测的半监督微调自监督图注意力网络

IF 6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Neural Networks Pub Date : 2024-08-22 DOI:10.1016/j.neunet.2024.106643
{"title":"SFT-SGAT:用于情感识别和意识检测的半监督微调自监督图注意力网络","authors":"","doi":"10.1016/j.neunet.2024.106643","DOIUrl":null,"url":null,"abstract":"<div><p>Emotional recognition is highly important in the field of brain-computer interfaces (BCIs). However, due to the individual variability in electroencephalogram (EEG) signals and the challenges in obtaining accurate emotional labels, traditional methods have shown poor performance in cross-subject emotion recognition. In this study, we propose a cross-subject EEG emotion recognition method based on a semi-supervised fine-tuning self-supervised graph attention network (SFT-SGAT). First, we model multi-channel EEG signals by constructing a graph structure that dynamically captures the spatiotemporal topological features of EEG signals. Second, we employ a self-supervised graph attention neural network to facilitate model training, mitigating the impact of signal noise on the model. Finally, a semi-supervised approach is used to fine-tune the model, enhancing its generalization ability in cross-subject classification. By combining supervised and unsupervised learning techniques, the SFT-SGAT maximizes the utility of limited labeled data in EEG emotion recognition tasks, thereby enhancing the model’s performance. Experiments based on leave-one-subject-out cross-validation demonstrate that SFT-SGAT achieves state-of-the-art cross-subject emotion recognition performance on the SEED and SEED-IV datasets, with accuracies of 92.04% and 82.76%, respectively. Furthermore, experiments conducted on a self-collected dataset comprising ten healthy subjects and eight patients with disorders of consciousness (DOCs) revealed that the SFT-SGAT attains high classification performance in healthy subjects (maximum accuracy of 95.84%) and was successfully applied to DOC patients, with four patients achieving emotion recognition accuracies exceeding 60%. The experiments demonstrate the effectiveness of the proposed SFT-SGAT model in cross-subject EEG emotion recognition and its potential for assessing levels of consciousness in patients with DOC.</p></div>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":null,"pages":null},"PeriodicalIF":6.0000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SFT-SGAT: A semi-supervised fine-tuning self-supervised graph attention network for emotion recognition and consciousness detection\",\"authors\":\"\",\"doi\":\"10.1016/j.neunet.2024.106643\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Emotional recognition is highly important in the field of brain-computer interfaces (BCIs). However, due to the individual variability in electroencephalogram (EEG) signals and the challenges in obtaining accurate emotional labels, traditional methods have shown poor performance in cross-subject emotion recognition. In this study, we propose a cross-subject EEG emotion recognition method based on a semi-supervised fine-tuning self-supervised graph attention network (SFT-SGAT). First, we model multi-channel EEG signals by constructing a graph structure that dynamically captures the spatiotemporal topological features of EEG signals. Second, we employ a self-supervised graph attention neural network to facilitate model training, mitigating the impact of signal noise on the model. Finally, a semi-supervised approach is used to fine-tune the model, enhancing its generalization ability in cross-subject classification. By combining supervised and unsupervised learning techniques, the SFT-SGAT maximizes the utility of limited labeled data in EEG emotion recognition tasks, thereby enhancing the model’s performance. Experiments based on leave-one-subject-out cross-validation demonstrate that SFT-SGAT achieves state-of-the-art cross-subject emotion recognition performance on the SEED and SEED-IV datasets, with accuracies of 92.04% and 82.76%, respectively. Furthermore, experiments conducted on a self-collected dataset comprising ten healthy subjects and eight patients with disorders of consciousness (DOCs) revealed that the SFT-SGAT attains high classification performance in healthy subjects (maximum accuracy of 95.84%) and was successfully applied to DOC patients, with four patients achieving emotion recognition accuracies exceeding 60%. The experiments demonstrate the effectiveness of the proposed SFT-SGAT model in cross-subject EEG emotion recognition and its potential for assessing levels of consciousness in patients with DOC.</p></div>\",\"PeriodicalId\":49763,\"journal\":{\"name\":\"Neural Networks\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0893608024005677\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893608024005677","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

情绪识别在脑机接口(BCI)领域非常重要。然而,由于脑电图(EEG)信号的个体差异性和获取准确情感标签的挑战,传统方法在跨主体情感识别方面表现不佳。在本研究中,我们提出了一种基于半监督微调自监督图注意网络(SFT-SGAT)的跨主体脑电图情感识别方法。首先,我们通过构建能动态捕捉脑电信号时空拓扑特征的图结构来建立多通道脑电信号模型。其次,我们采用自监督图注意神经网络来促进模型训练,减轻信号噪声对模型的影响。最后,我们采用半监督方法对模型进行微调,从而增强其在跨主体分类中的泛化能力。通过结合监督和非监督学习技术,SFT-SGAT 在脑电图情感识别任务中最大限度地利用了有限的标记数据,从而提高了模型的性能。基于留一主体交叉验证的实验表明,SFT-SGAT 在 SEED 和 SEED-IV 数据集上实现了最先进的跨主体情感识别性能,准确率分别为 92.04% 和 82.76%。此外,在一个由 10 名健康受试者和 8 名意识障碍(DOCs)患者组成的自收集数据集上进行的实验表明,SFT-SGAT 在健康受试者身上获得了很高的分类性能(最高准确率为 95.84%),并成功地应用于 DOC 患者身上,其中 4 名患者的情绪识别准确率超过了 60%。实验证明了所提出的 SFT-SGAT 模型在跨受试者脑电图情绪识别方面的有效性,以及其在评估 DOC 患者意识水平方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SFT-SGAT: A semi-supervised fine-tuning self-supervised graph attention network for emotion recognition and consciousness detection

Emotional recognition is highly important in the field of brain-computer interfaces (BCIs). However, due to the individual variability in electroencephalogram (EEG) signals and the challenges in obtaining accurate emotional labels, traditional methods have shown poor performance in cross-subject emotion recognition. In this study, we propose a cross-subject EEG emotion recognition method based on a semi-supervised fine-tuning self-supervised graph attention network (SFT-SGAT). First, we model multi-channel EEG signals by constructing a graph structure that dynamically captures the spatiotemporal topological features of EEG signals. Second, we employ a self-supervised graph attention neural network to facilitate model training, mitigating the impact of signal noise on the model. Finally, a semi-supervised approach is used to fine-tune the model, enhancing its generalization ability in cross-subject classification. By combining supervised and unsupervised learning techniques, the SFT-SGAT maximizes the utility of limited labeled data in EEG emotion recognition tasks, thereby enhancing the model’s performance. Experiments based on leave-one-subject-out cross-validation demonstrate that SFT-SGAT achieves state-of-the-art cross-subject emotion recognition performance on the SEED and SEED-IV datasets, with accuracies of 92.04% and 82.76%, respectively. Furthermore, experiments conducted on a self-collected dataset comprising ten healthy subjects and eight patients with disorders of consciousness (DOCs) revealed that the SFT-SGAT attains high classification performance in healthy subjects (maximum accuracy of 95.84%) and was successfully applied to DOC patients, with four patients achieving emotion recognition accuracies exceeding 60%. The experiments demonstrate the effectiveness of the proposed SFT-SGAT model in cross-subject EEG emotion recognition and its potential for assessing levels of consciousness in patients with DOC.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neural Networks
Neural Networks 工程技术-计算机:人工智能
CiteScore
13.90
自引率
7.70%
发文量
425
审稿时长
67 days
期刊介绍: Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.
期刊最新文献
Multi-focus image fusion with parameter adaptive dual channel dynamic threshold neural P systems. Joint computation offloading and resource allocation for end-edge collaboration in internet of vehicles via multi-agent reinforcement learning. An information-theoretic perspective of physical adversarial patches. Contrastive fine-grained domain adaptation network for EEG-based vigilance estimation. Decoupling visual and identity features for adversarial palm-vein image attack
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1