Sharayu Chandratre, Daniel Merenich, Kenneth Myers, Bin Chen
{"title":"5-氨基乙酰丙酸介导的光动力疗法与激酶抑制剂拉帕替尼联合使用可增强胶质母细胞瘤细胞的死亡。","authors":"Sharayu Chandratre, Daniel Merenich, Kenneth Myers, Bin Chen","doi":"10.1007/s10495-024-02012-w","DOIUrl":null,"url":null,"abstract":"<div><p>5-Aminolevulinic acid (ALA) is an intraoperative imaging agent approved for protoporphyrin IX (PpIX) fluorescence-guided resection of glioblastoma (GBM). It is currently under clinical evaluation for photodynamic therapy (PDT) after the completion of GBM surgery. We previously showed that lapatinib, a clinical kinase inhibitor of epidermal growth factor receptor 1 & 2 (EGFR and HER2), enhanced PpIX fluorescence in a panel of GBM cell lines by blocking ABCG2 (ATP-binding cassette super-family G member 2)-mediated PpIX efflux, which suggests its potential for improving ALA for GBM surgery and PDT. Here we show that lapatinib enhanced PDT-induced cytotoxicity by promoting GBM cell death with the induction of apoptosis followed by necrosis. While the induction of tumor cell apoptosis was massive and rapid in the H4 cell line with no detectable Bcl-2 and a low level of Bcl-xL, it was delayed and much less in extent in A172, U-87 and U-118 cell lines with higher levels of pro-survival Bcl-2 family proteins. Lapatinib treatment alone neither reduced GBM cell viability nor had any significant effect on EGFR downstream signaling. Its enhancement of ALA–PDT was largely due to the increase of intracellular PpIX particularly in the mitochondria, resulting in the activation of mitochondria-mediated apoptosis in H4 cells. Our present study demonstrates that lapatinib inhibits ABCG2-mediated PpIX efflux and sensitizes GBM cells to ALA–PDT by inducing tumor cell death.</p></div>","PeriodicalId":8062,"journal":{"name":"Apoptosis","volume":"29 11-12","pages":"1978 - 1987"},"PeriodicalIF":6.1000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11550286/pdf/","citationCount":"0","resultStr":"{\"title\":\"5-Aminolevulinic acid-mediated photodynamic therapy in combination with kinase inhibitor lapatinib enhances glioblastoma cell death\",\"authors\":\"Sharayu Chandratre, Daniel Merenich, Kenneth Myers, Bin Chen\",\"doi\":\"10.1007/s10495-024-02012-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>5-Aminolevulinic acid (ALA) is an intraoperative imaging agent approved for protoporphyrin IX (PpIX) fluorescence-guided resection of glioblastoma (GBM). It is currently under clinical evaluation for photodynamic therapy (PDT) after the completion of GBM surgery. We previously showed that lapatinib, a clinical kinase inhibitor of epidermal growth factor receptor 1 & 2 (EGFR and HER2), enhanced PpIX fluorescence in a panel of GBM cell lines by blocking ABCG2 (ATP-binding cassette super-family G member 2)-mediated PpIX efflux, which suggests its potential for improving ALA for GBM surgery and PDT. Here we show that lapatinib enhanced PDT-induced cytotoxicity by promoting GBM cell death with the induction of apoptosis followed by necrosis. While the induction of tumor cell apoptosis was massive and rapid in the H4 cell line with no detectable Bcl-2 and a low level of Bcl-xL, it was delayed and much less in extent in A172, U-87 and U-118 cell lines with higher levels of pro-survival Bcl-2 family proteins. Lapatinib treatment alone neither reduced GBM cell viability nor had any significant effect on EGFR downstream signaling. Its enhancement of ALA–PDT was largely due to the increase of intracellular PpIX particularly in the mitochondria, resulting in the activation of mitochondria-mediated apoptosis in H4 cells. Our present study demonstrates that lapatinib inhibits ABCG2-mediated PpIX efflux and sensitizes GBM cells to ALA–PDT by inducing tumor cell death.</p></div>\",\"PeriodicalId\":8062,\"journal\":{\"name\":\"Apoptosis\",\"volume\":\"29 11-12\",\"pages\":\"1978 - 1987\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11550286/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Apoptosis\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10495-024-02012-w\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Apoptosis","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10495-024-02012-w","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
5-Aminolevulinic acid-mediated photodynamic therapy in combination with kinase inhibitor lapatinib enhances glioblastoma cell death
5-Aminolevulinic acid (ALA) is an intraoperative imaging agent approved for protoporphyrin IX (PpIX) fluorescence-guided resection of glioblastoma (GBM). It is currently under clinical evaluation for photodynamic therapy (PDT) after the completion of GBM surgery. We previously showed that lapatinib, a clinical kinase inhibitor of epidermal growth factor receptor 1 & 2 (EGFR and HER2), enhanced PpIX fluorescence in a panel of GBM cell lines by blocking ABCG2 (ATP-binding cassette super-family G member 2)-mediated PpIX efflux, which suggests its potential for improving ALA for GBM surgery and PDT. Here we show that lapatinib enhanced PDT-induced cytotoxicity by promoting GBM cell death with the induction of apoptosis followed by necrosis. While the induction of tumor cell apoptosis was massive and rapid in the H4 cell line with no detectable Bcl-2 and a low level of Bcl-xL, it was delayed and much less in extent in A172, U-87 and U-118 cell lines with higher levels of pro-survival Bcl-2 family proteins. Lapatinib treatment alone neither reduced GBM cell viability nor had any significant effect on EGFR downstream signaling. Its enhancement of ALA–PDT was largely due to the increase of intracellular PpIX particularly in the mitochondria, resulting in the activation of mitochondria-mediated apoptosis in H4 cells. Our present study demonstrates that lapatinib inhibits ABCG2-mediated PpIX efflux and sensitizes GBM cells to ALA–PDT by inducing tumor cell death.
期刊介绍:
Apoptosis, a monthly international peer-reviewed journal, focuses on the rapid publication of innovative investigations into programmed cell death. The journal aims to stimulate research on the mechanisms and role of apoptosis in various human diseases, such as cancer, autoimmune disease, viral infection, AIDS, cardiovascular disease, neurodegenerative disorders, osteoporosis, and aging. The Editor-In-Chief acknowledges the importance of advancing clinical therapies for apoptosis-related diseases. Apoptosis considers Original Articles, Reviews, Short Communications, Letters to the Editor, and Book Reviews for publication.