多组学揭示了奶牛酮病早期发病过程中的血液差异代谢物和差异基因。

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-09-01 DOI:10.1016/j.ygeno.2024.110927
Sha Ping , Ma Xuehu , Hu Chunli, Feng Xue, An Yanhao, Ma Yun, Ma Yanfen
{"title":"多组学揭示了奶牛酮病早期发病过程中的血液差异代谢物和差异基因。","authors":"Sha Ping ,&nbsp;Ma Xuehu ,&nbsp;Hu Chunli,&nbsp;Feng Xue,&nbsp;An Yanhao,&nbsp;Ma Yun,&nbsp;Ma Yanfen","doi":"10.1016/j.ygeno.2024.110927","DOIUrl":null,"url":null,"abstract":"<div><p>Ketosis—a metabolic state characterized by elevated levels of ketone bodies in the blood or urine—reduces the performance and health of dairy cows and causes substantial economic losses for the dairy industry. Currently, beta-hydroxybutyric acid is the gold standard for determining ketosis in cows; however, as this method is only applicable postpartum, it is not conducive to the early intervention of ketosis in dairy cows. In this study, the sera of dry, periparturient, postpartum ketotic, and healthy cows were analyzed by both transcriptomics and metabolomics techniques. Moreover, changes of gene expression and metabolites were observed, and serum physiological and biochemical indexes were detected by ELISA. The purpose was to screen biomarkers that can be used to detect the incidence of dry or periparturient ketosis in cows. The results showed that ketotic cows had increased levels of glycolipid metabolism indexes, oxidizing factors, and inflammatory factors during dry periods and liver damage, which could be used as early biomarkers to predict the onset of ketosis. Transcriptomic results yielded 20 differentially expressed genes (DEGs) between ketotic and healthy cows during dry, peripartum, and postpartum periods. GO and KEGG enrichment analyses indicated that these DEGs were involved in amino acid metabolism, energy metabolism, and disease-related signaling pathways. The metabolomics sequencing results showed that ketotic cows mainly showed enrichment in tricarboxylic acid cycle, butyric acid metabolism, carbon metabolism, lysine degradation, fatty acid degradation, and other signaling pathways. Metabolites differed between ketotic and healthy cows in dry, pre-parturition, and post-parturition periods. Combined transcriptomics and metabolomics analyses identified significant enrichment in the glucagon signaling pathway and the lysine degradation signaling pathway in dry, periparturient, and postpartum ketotic cows. PRKAB2 and SETMAR—key DEGs of the glucagon signaling pathway and lysine degradation signaling pathway, respectively—can be used as key marker genes for determining the early onset of ketosis in dairy cows.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0888754324001484/pdfft?md5=f2af94bc739c0e96aa8aa24e6438e6cd&pid=1-s2.0-S0888754324001484-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Multiomics reveals blood differential metabolites and differential genes in the early onset of ketosis in dairy cows\",\"authors\":\"Sha Ping ,&nbsp;Ma Xuehu ,&nbsp;Hu Chunli,&nbsp;Feng Xue,&nbsp;An Yanhao,&nbsp;Ma Yun,&nbsp;Ma Yanfen\",\"doi\":\"10.1016/j.ygeno.2024.110927\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Ketosis—a metabolic state characterized by elevated levels of ketone bodies in the blood or urine—reduces the performance and health of dairy cows and causes substantial economic losses for the dairy industry. Currently, beta-hydroxybutyric acid is the gold standard for determining ketosis in cows; however, as this method is only applicable postpartum, it is not conducive to the early intervention of ketosis in dairy cows. In this study, the sera of dry, periparturient, postpartum ketotic, and healthy cows were analyzed by both transcriptomics and metabolomics techniques. Moreover, changes of gene expression and metabolites were observed, and serum physiological and biochemical indexes were detected by ELISA. The purpose was to screen biomarkers that can be used to detect the incidence of dry or periparturient ketosis in cows. The results showed that ketotic cows had increased levels of glycolipid metabolism indexes, oxidizing factors, and inflammatory factors during dry periods and liver damage, which could be used as early biomarkers to predict the onset of ketosis. Transcriptomic results yielded 20 differentially expressed genes (DEGs) between ketotic and healthy cows during dry, peripartum, and postpartum periods. GO and KEGG enrichment analyses indicated that these DEGs were involved in amino acid metabolism, energy metabolism, and disease-related signaling pathways. The metabolomics sequencing results showed that ketotic cows mainly showed enrichment in tricarboxylic acid cycle, butyric acid metabolism, carbon metabolism, lysine degradation, fatty acid degradation, and other signaling pathways. Metabolites differed between ketotic and healthy cows in dry, pre-parturition, and post-parturition periods. Combined transcriptomics and metabolomics analyses identified significant enrichment in the glucagon signaling pathway and the lysine degradation signaling pathway in dry, periparturient, and postpartum ketotic cows. PRKAB2 and SETMAR—key DEGs of the glucagon signaling pathway and lysine degradation signaling pathway, respectively—can be used as key marker genes for determining the early onset of ketosis in dairy cows.</p></div>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0888754324001484/pdfft?md5=f2af94bc739c0e96aa8aa24e6438e6cd&pid=1-s2.0-S0888754324001484-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0888754324001484\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0888754324001484","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

酮病--一种以血液或尿液中酮体水平升高为特征的代谢状态--会降低奶牛的生产性能和健康水平,并给乳品业造成巨大的经济损失。目前,β-羟丁酸是确定奶牛酮病的黄金标准;然而,由于这种方法仅适用于产后,因此不利于对奶牛酮病进行早期干预。本研究采用转录组学和代谢组学技术分析了干奶牛、围产期奶牛、产后酮病奶牛和健康奶牛的血清。此外,还观察了基因表达和代谢物的变化,并通过 ELISA 检测了血清生理生化指标。目的是筛选出可用于检测奶牛干性或围产期酮病发病率的生物标志物。结果表明,酮病奶牛的糖脂代谢指标、氧化因子和炎症因子水平在干奶期和肝损伤期均有所升高,这些指标可作为预测酮病发生的早期生物标志物。转录组学结果显示,在干燥期、围产期和产后,酮病奶牛和健康奶牛之间存在20个差异表达基因(DEGs)。GO和KEGG富集分析表明,这些DEGs涉及氨基酸代谢、能量代谢和疾病相关信号通路。代谢组学测序结果显示,酮症奶牛主要在三羧酸循环、丁酸代谢、碳代谢、赖氨酸降解、脂肪酸降解和其他信号通路中表现出富集。酮病奶牛和健康奶牛在干奶、产前和产后的代谢物存在差异。结合转录组学和代谢组学分析发现,在干奶、围产期和产后酮症奶牛中,胰高血糖素信号通路和赖氨酸降解信号通路显著富集。PRKAB2和SETMAR--分别是胰高血糖素信号通路和赖氨酸降解信号通路的关键DEG--可作为确定奶牛酮病早期发病的关键标记基因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multiomics reveals blood differential metabolites and differential genes in the early onset of ketosis in dairy cows

Ketosis—a metabolic state characterized by elevated levels of ketone bodies in the blood or urine—reduces the performance and health of dairy cows and causes substantial economic losses for the dairy industry. Currently, beta-hydroxybutyric acid is the gold standard for determining ketosis in cows; however, as this method is only applicable postpartum, it is not conducive to the early intervention of ketosis in dairy cows. In this study, the sera of dry, periparturient, postpartum ketotic, and healthy cows were analyzed by both transcriptomics and metabolomics techniques. Moreover, changes of gene expression and metabolites were observed, and serum physiological and biochemical indexes were detected by ELISA. The purpose was to screen biomarkers that can be used to detect the incidence of dry or periparturient ketosis in cows. The results showed that ketotic cows had increased levels of glycolipid metabolism indexes, oxidizing factors, and inflammatory factors during dry periods and liver damage, which could be used as early biomarkers to predict the onset of ketosis. Transcriptomic results yielded 20 differentially expressed genes (DEGs) between ketotic and healthy cows during dry, peripartum, and postpartum periods. GO and KEGG enrichment analyses indicated that these DEGs were involved in amino acid metabolism, energy metabolism, and disease-related signaling pathways. The metabolomics sequencing results showed that ketotic cows mainly showed enrichment in tricarboxylic acid cycle, butyric acid metabolism, carbon metabolism, lysine degradation, fatty acid degradation, and other signaling pathways. Metabolites differed between ketotic and healthy cows in dry, pre-parturition, and post-parturition periods. Combined transcriptomics and metabolomics analyses identified significant enrichment in the glucagon signaling pathway and the lysine degradation signaling pathway in dry, periparturient, and postpartum ketotic cows. PRKAB2 and SETMAR—key DEGs of the glucagon signaling pathway and lysine degradation signaling pathway, respectively—can be used as key marker genes for determining the early onset of ketosis in dairy cows.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Hyperbaric oxygen treatment promotes tendon-bone interface healing in a rabbit model of rotator cuff tears. Oxygen-ozone therapy for myocardial ischemic stroke and cardiovascular disorders. Comparative study on the anti-inflammatory and protective effects of different oxygen therapy regimens on lipopolysaccharide-induced acute lung injury in mice. Heme oxygenase/carbon monoxide system and development of the heart. Hyperbaric oxygen for moderate-to-severe traumatic brain injury: outcomes 5-8 years after injury.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1