Meng Liang, Siyu Dong, Yi Guo, Yuyi Zhang, Xiao Xiao, Jun Ma, Xiaowen Jiang, Wenhui Yu
{"title":"基于网络药理学和实验验证的茵陈蒿水提取物治疗非酒精性脂肪肝的潜在机制探讨","authors":"Meng Liang, Siyu Dong, Yi Guo, Yuyi Zhang, Xiao Xiao, Jun Ma, Xiaowen Jiang, Wenhui Yu","doi":"10.1093/jpp/rgae061","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Non-alcoholic fatty liver disease (NAFLD) is a nutritional and metabolic disease with a high prevalence today. Artemisia capillaris has anti-inflammatory, antioxidant, and other effects. However, the mechanism of A. capillaris in treating NAFLD is still poorly understood.</p><p><strong>Methods: </strong>This study explored the mechanism of A. capillaris in the treatment of NAFLD through network pharmacology and molecular docking, and verified the results through in vivo experiments using a high-fat diet-induced mouse model and in vitro experiments using an oleic acid-induced HepG2 cell model.</p><p><strong>Key findings: </strong>Aqueous extract of A. capillaris (AEAC) can reduce blood lipids, reduce liver lipid accumulation and liver inflammation in NAFLD mice, and improve NAFLD. Network pharmacology analysis revealed that 51 drug ingredients in A. capillaris correspond to 370 targets that act on NAFLD. GEO data mining obtained 93 liver differentially expressed genes related to NAFLD. In the UHPLC-MS detection results, 36 components were characterized and molecular docked with JNK. Verified in vitro and in vivo, the results show that JNK and the phosphorylation levels of IL-6, IL-1β, c-Jun, c-Fos, and CCL2 are key targets and pathways.</p><p><strong>Conclusions: </strong>This study confirmed that AEAC reduces lipid accumulation and inflammation in the liver of NAFLD mice by inhibiting the JNK/AP-1 pathway.</p>","PeriodicalId":16960,"journal":{"name":"Journal of Pharmacy and Pharmacology","volume":" ","pages":"1328-1339"},"PeriodicalIF":2.8000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploration of the potential mechanism of aqueous extract of Artemisia capillaris for the treatment of non-alcoholic fatty liver disease based on network pharmacology and experimental verification.\",\"authors\":\"Meng Liang, Siyu Dong, Yi Guo, Yuyi Zhang, Xiao Xiao, Jun Ma, Xiaowen Jiang, Wenhui Yu\",\"doi\":\"10.1093/jpp/rgae061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>Non-alcoholic fatty liver disease (NAFLD) is a nutritional and metabolic disease with a high prevalence today. Artemisia capillaris has anti-inflammatory, antioxidant, and other effects. However, the mechanism of A. capillaris in treating NAFLD is still poorly understood.</p><p><strong>Methods: </strong>This study explored the mechanism of A. capillaris in the treatment of NAFLD through network pharmacology and molecular docking, and verified the results through in vivo experiments using a high-fat diet-induced mouse model and in vitro experiments using an oleic acid-induced HepG2 cell model.</p><p><strong>Key findings: </strong>Aqueous extract of A. capillaris (AEAC) can reduce blood lipids, reduce liver lipid accumulation and liver inflammation in NAFLD mice, and improve NAFLD. Network pharmacology analysis revealed that 51 drug ingredients in A. capillaris correspond to 370 targets that act on NAFLD. GEO data mining obtained 93 liver differentially expressed genes related to NAFLD. In the UHPLC-MS detection results, 36 components were characterized and molecular docked with JNK. Verified in vitro and in vivo, the results show that JNK and the phosphorylation levels of IL-6, IL-1β, c-Jun, c-Fos, and CCL2 are key targets and pathways.</p><p><strong>Conclusions: </strong>This study confirmed that AEAC reduces lipid accumulation and inflammation in the liver of NAFLD mice by inhibiting the JNK/AP-1 pathway.</p>\",\"PeriodicalId\":16960,\"journal\":{\"name\":\"Journal of Pharmacy and Pharmacology\",\"volume\":\" \",\"pages\":\"1328-1339\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pharmacy and Pharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/jpp/rgae061\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pharmacy and Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/jpp/rgae061","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Exploration of the potential mechanism of aqueous extract of Artemisia capillaris for the treatment of non-alcoholic fatty liver disease based on network pharmacology and experimental verification.
Objectives: Non-alcoholic fatty liver disease (NAFLD) is a nutritional and metabolic disease with a high prevalence today. Artemisia capillaris has anti-inflammatory, antioxidant, and other effects. However, the mechanism of A. capillaris in treating NAFLD is still poorly understood.
Methods: This study explored the mechanism of A. capillaris in the treatment of NAFLD through network pharmacology and molecular docking, and verified the results through in vivo experiments using a high-fat diet-induced mouse model and in vitro experiments using an oleic acid-induced HepG2 cell model.
Key findings: Aqueous extract of A. capillaris (AEAC) can reduce blood lipids, reduce liver lipid accumulation and liver inflammation in NAFLD mice, and improve NAFLD. Network pharmacology analysis revealed that 51 drug ingredients in A. capillaris correspond to 370 targets that act on NAFLD. GEO data mining obtained 93 liver differentially expressed genes related to NAFLD. In the UHPLC-MS detection results, 36 components were characterized and molecular docked with JNK. Verified in vitro and in vivo, the results show that JNK and the phosphorylation levels of IL-6, IL-1β, c-Jun, c-Fos, and CCL2 are key targets and pathways.
Conclusions: This study confirmed that AEAC reduces lipid accumulation and inflammation in the liver of NAFLD mice by inhibiting the JNK/AP-1 pathway.
期刊介绍:
JPP keeps pace with new research on how drug action may be optimized by new technologies, and attention is given to understanding and improving drug interactions in the body. At the same time, the journal maintains its established and well-respected core strengths in areas such as pharmaceutics and drug delivery, experimental and clinical pharmacology, biopharmaceutics and drug disposition, and drugs from natural sources. JPP publishes at least one special issue on a topical theme each year.