Olivér Jáger, Csilla Szebenyi, Tammam Khaliefeh Siliman Abu Saleem, Anna Molnár, Vanda Kovács, Karina Kiss, Mónika Homa, Bernadett Vágó, Sándor Kiss-Vetráb, Mónika Varga, Rita Sinka, Csaba Vágvölgyi, Gábor Nagy, Tamás Papp
{"title":"Mucor lusitanicus 中两个生存因子 1 基因的功能特征。","authors":"Olivér Jáger, Csilla Szebenyi, Tammam Khaliefeh Siliman Abu Saleem, Anna Molnár, Vanda Kovács, Karina Kiss, Mónika Homa, Bernadett Vágó, Sándor Kiss-Vetráb, Mónika Varga, Rita Sinka, Csaba Vágvölgyi, Gábor Nagy, Tamás Papp","doi":"10.1128/spectrum.01103-24","DOIUrl":null,"url":null,"abstract":"<p><p>Survival factor 1 (Svf1) protein has been described in some ascomycetous fungi where it was found to be contributing to several essential physiological processes, such as response to osmotic, oxidative and cold stresses, sphingolipid biosynthesis, morphogenesis, sporulation, antifungal resistance, and pathogenicity. It was also suggested that it can be a novel central regulator affecting the expression of various genes. In the present study, function of this protein and the encoding genes is described for the first time in a fungus (i.e., in <i>Mucor lusitanicus</i>) belonging to the order Mucorales. <i>M. lusitanicus</i> has two putative <i>svf1</i> genes named <i>svf1a</i> and <i>svf1b</i>. Expression of both genes was proven. Although the expression of <i>svf1a</i> was affected by several environmental stresses and knocking out the gene affected adaptation to low temperatures and the sporulation ability, the main survival factor functions, such as participation in the maintenance of the viability, the response to oxidative and cold stresses, and the sphingolipid biosynthesis, could be associated with Svf1b, suggesting a central regulatory role to this protein. Interestingly, knockout of both genes affected the pathogenicity of the fungus in a <i>Drosophila</i> model.</p><p><strong>Importance: </strong><i>Mucor lusitanicus</i> is a widely used model organism to study various biological processes in the basal fungal group Mucorales. Several members of this group can be agents of mucormycosis, an opportunistic fungal infection, which is associated with high mortality, rapid progression, and wide resistance to the commonly used antifungal agents. Svf1 proteins have so far only been identified in fungi, where they have been involved in pathogenicity and resistance to antifungal agents in many cases. Only a limited number of factors affecting the stress response, antifungal resistance, and virulence of Mucorales fungi have been revealed. Elucidating the function of a fungus-specific protein that may regulate these processes may bring us closer to understanding the pathogenesis of these fungi.</p>","PeriodicalId":18670,"journal":{"name":"Microbiology spectrum","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11448193/pdf/","citationCount":"0","resultStr":"{\"title\":\"Functional characterization of two survival factor 1 genes in <i>Mucor lusitanicus</i>.\",\"authors\":\"Olivér Jáger, Csilla Szebenyi, Tammam Khaliefeh Siliman Abu Saleem, Anna Molnár, Vanda Kovács, Karina Kiss, Mónika Homa, Bernadett Vágó, Sándor Kiss-Vetráb, Mónika Varga, Rita Sinka, Csaba Vágvölgyi, Gábor Nagy, Tamás Papp\",\"doi\":\"10.1128/spectrum.01103-24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Survival factor 1 (Svf1) protein has been described in some ascomycetous fungi where it was found to be contributing to several essential physiological processes, such as response to osmotic, oxidative and cold stresses, sphingolipid biosynthesis, morphogenesis, sporulation, antifungal resistance, and pathogenicity. It was also suggested that it can be a novel central regulator affecting the expression of various genes. In the present study, function of this protein and the encoding genes is described for the first time in a fungus (i.e., in <i>Mucor lusitanicus</i>) belonging to the order Mucorales. <i>M. lusitanicus</i> has two putative <i>svf1</i> genes named <i>svf1a</i> and <i>svf1b</i>. Expression of both genes was proven. Although the expression of <i>svf1a</i> was affected by several environmental stresses and knocking out the gene affected adaptation to low temperatures and the sporulation ability, the main survival factor functions, such as participation in the maintenance of the viability, the response to oxidative and cold stresses, and the sphingolipid biosynthesis, could be associated with Svf1b, suggesting a central regulatory role to this protein. Interestingly, knockout of both genes affected the pathogenicity of the fungus in a <i>Drosophila</i> model.</p><p><strong>Importance: </strong><i>Mucor lusitanicus</i> is a widely used model organism to study various biological processes in the basal fungal group Mucorales. Several members of this group can be agents of mucormycosis, an opportunistic fungal infection, which is associated with high mortality, rapid progression, and wide resistance to the commonly used antifungal agents. Svf1 proteins have so far only been identified in fungi, where they have been involved in pathogenicity and resistance to antifungal agents in many cases. Only a limited number of factors affecting the stress response, antifungal resistance, and virulence of Mucorales fungi have been revealed. Elucidating the function of a fungus-specific protein that may regulate these processes may bring us closer to understanding the pathogenesis of these fungi.</p>\",\"PeriodicalId\":18670,\"journal\":{\"name\":\"Microbiology spectrum\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11448193/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbiology spectrum\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1128/spectrum.01103-24\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiology spectrum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/spectrum.01103-24","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/27 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Functional characterization of two survival factor 1 genes in Mucor lusitanicus.
Survival factor 1 (Svf1) protein has been described in some ascomycetous fungi where it was found to be contributing to several essential physiological processes, such as response to osmotic, oxidative and cold stresses, sphingolipid biosynthesis, morphogenesis, sporulation, antifungal resistance, and pathogenicity. It was also suggested that it can be a novel central regulator affecting the expression of various genes. In the present study, function of this protein and the encoding genes is described for the first time in a fungus (i.e., in Mucor lusitanicus) belonging to the order Mucorales. M. lusitanicus has two putative svf1 genes named svf1a and svf1b. Expression of both genes was proven. Although the expression of svf1a was affected by several environmental stresses and knocking out the gene affected adaptation to low temperatures and the sporulation ability, the main survival factor functions, such as participation in the maintenance of the viability, the response to oxidative and cold stresses, and the sphingolipid biosynthesis, could be associated with Svf1b, suggesting a central regulatory role to this protein. Interestingly, knockout of both genes affected the pathogenicity of the fungus in a Drosophila model.
Importance: Mucor lusitanicus is a widely used model organism to study various biological processes in the basal fungal group Mucorales. Several members of this group can be agents of mucormycosis, an opportunistic fungal infection, which is associated with high mortality, rapid progression, and wide resistance to the commonly used antifungal agents. Svf1 proteins have so far only been identified in fungi, where they have been involved in pathogenicity and resistance to antifungal agents in many cases. Only a limited number of factors affecting the stress response, antifungal resistance, and virulence of Mucorales fungi have been revealed. Elucidating the function of a fungus-specific protein that may regulate these processes may bring us closer to understanding the pathogenesis of these fungi.
期刊介绍:
Microbiology Spectrum publishes commissioned review articles on topics in microbiology representing ten content areas: Archaea; Food Microbiology; Bacterial Genetics, Cell Biology, and Physiology; Clinical Microbiology; Environmental Microbiology and Ecology; Eukaryotic Microbes; Genomics, Computational, and Synthetic Microbiology; Immunology; Pathogenesis; and Virology. Reviews are interrelated, with each review linking to other related content. A large board of Microbiology Spectrum editors aids in the development of topics for potential reviews and in the identification of an editor, or editors, who shepherd each collection.