Sukhwinder K Bhullar, Haimanti Mondal, John Thomas, Duygu Gazioglu Ruzgar, Natarajan Chandrasekaran, Amitava Mukherjee, Martin B G Jun, Stephanie M Willerth
{"title":"基于定制生物材料的心血管疾病潜在治疗策略。","authors":"Sukhwinder K Bhullar, Haimanti Mondal, John Thomas, Duygu Gazioglu Ruzgar, Natarajan Chandrasekaran, Amitava Mukherjee, Martin B G Jun, Stephanie M Willerth","doi":"10.24976/Discov.Med.202436187.142","DOIUrl":null,"url":null,"abstract":"<p><p>Cardiovascular disease is a significant health concern worldwide, and varied effective treatment and prevention methods have been developed. Among these, tailored biomaterials-based strategies such as stents, scaffolds, patches, and drug delivery systems have emerged as a promising avenue. These devices are designed to match the mechanical and biological mechanisms of the cardiovascular system, ensuring optimal performance and compatibility. By effectively treating or preventing cardiovascular diseases, these devices have the potential to improve patient health outcomes significantly. They can restore blood flow by addressing blocked arteries and regenerate damaged cardiac tissue by delivering bioactive agents or cells directly to the affected area in a targeted, sustained, and controllable manner. Therefore, the objective of this article is to summarize the available evidence on these tailored biomaterial-based tunable cardiovascular devices. This knowledge can help to transform cardiovascular medicine for the treatment or prevention of cardiovascular disease and restore cardiac function to improve patients' quality of life.</p>","PeriodicalId":93980,"journal":{"name":"Discovery medicine","volume":"36 187","pages":"1544-1554"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tailored-Biomaterials Based Potential Strategies for Cardiovascular Disease.\",\"authors\":\"Sukhwinder K Bhullar, Haimanti Mondal, John Thomas, Duygu Gazioglu Ruzgar, Natarajan Chandrasekaran, Amitava Mukherjee, Martin B G Jun, Stephanie M Willerth\",\"doi\":\"10.24976/Discov.Med.202436187.142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cardiovascular disease is a significant health concern worldwide, and varied effective treatment and prevention methods have been developed. Among these, tailored biomaterials-based strategies such as stents, scaffolds, patches, and drug delivery systems have emerged as a promising avenue. These devices are designed to match the mechanical and biological mechanisms of the cardiovascular system, ensuring optimal performance and compatibility. By effectively treating or preventing cardiovascular diseases, these devices have the potential to improve patient health outcomes significantly. They can restore blood flow by addressing blocked arteries and regenerate damaged cardiac tissue by delivering bioactive agents or cells directly to the affected area in a targeted, sustained, and controllable manner. Therefore, the objective of this article is to summarize the available evidence on these tailored biomaterial-based tunable cardiovascular devices. This knowledge can help to transform cardiovascular medicine for the treatment or prevention of cardiovascular disease and restore cardiac function to improve patients' quality of life.</p>\",\"PeriodicalId\":93980,\"journal\":{\"name\":\"Discovery medicine\",\"volume\":\"36 187\",\"pages\":\"1544-1554\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discovery medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24976/Discov.Med.202436187.142\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discovery medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24976/Discov.Med.202436187.142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Tailored-Biomaterials Based Potential Strategies for Cardiovascular Disease.
Cardiovascular disease is a significant health concern worldwide, and varied effective treatment and prevention methods have been developed. Among these, tailored biomaterials-based strategies such as stents, scaffolds, patches, and drug delivery systems have emerged as a promising avenue. These devices are designed to match the mechanical and biological mechanisms of the cardiovascular system, ensuring optimal performance and compatibility. By effectively treating or preventing cardiovascular diseases, these devices have the potential to improve patient health outcomes significantly. They can restore blood flow by addressing blocked arteries and regenerate damaged cardiac tissue by delivering bioactive agents or cells directly to the affected area in a targeted, sustained, and controllable manner. Therefore, the objective of this article is to summarize the available evidence on these tailored biomaterial-based tunable cardiovascular devices. This knowledge can help to transform cardiovascular medicine for the treatment or prevention of cardiovascular disease and restore cardiac function to improve patients' quality of life.