G.S. Zeng , H.N. Wang , F. Song , A. Rodriguez-Dono , L.R. Alejano
{"title":"横向各向同性流变岩体中的非圆形隧道的解析解","authors":"G.S. Zeng , H.N. Wang , F. Song , A. Rodriguez-Dono , L.R. Alejano","doi":"10.1016/j.ijrmms.2024.105880","DOIUrl":null,"url":null,"abstract":"<div><p>In the field of tunnelling applications, it is often found that the rock masses exhibit anisotropy and rheological properties. To optimize the utilization of underground space, the use of noncircular tunnels is often preferred. However, it is important to note that these noncircular tunnels can lead to high-stress concentrations and significant displacements.</p><p>This article presents a thorough analytical study on the time-dependent ground responses induced by the excavation of noncircular tunnels in transversely isotropic viscoelastic rock masses. The study considers a comprehensive set of engineering factors, including the viscoelastic characteristics of the surrounding rock, any anisotropic angle, and arbitrary tunnel shapes.</p><p>Using the generalized corresponding principle of anisotropic elasticity and anisotropic viscoelasticity, an analytical model is introduced. This model can accurately and swiftly address the problem of deformation and stresses around noncircular tunnels in anisotropic rheological rock masses. The analytical solutions are verified by their good agreement with the Finite Element Method (FEM) results under identical assumptions. Moreover, the qualitative agreement between the analytical solutions and field data further validates the practical application of the analytical solution.</p><p>A parametric analysis is then performed to investigate the effects of anisotropy ratio, anisotropy angle, and coefficient of lateral pressure on stresses and displacements.</p><p>The proposed analytical solutions can help reveal the particular mechanical mechanism of the time-dependent ground responses due to the combination of rock anisotropy and rheology. Furthermore, they can provide a more accurate prediction of the ground response, which may be useful to optimize the design of tunnel excavation in anisotropic rheological rock masses.</p></div>","PeriodicalId":54941,"journal":{"name":"International Journal of Rock Mechanics and Mining Sciences","volume":"182 ","pages":"Article 105880"},"PeriodicalIF":7.0000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analytical solutions of noncircular tunnels in transversely isotropic rheological rock masses\",\"authors\":\"G.S. Zeng , H.N. Wang , F. Song , A. Rodriguez-Dono , L.R. Alejano\",\"doi\":\"10.1016/j.ijrmms.2024.105880\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the field of tunnelling applications, it is often found that the rock masses exhibit anisotropy and rheological properties. To optimize the utilization of underground space, the use of noncircular tunnels is often preferred. However, it is important to note that these noncircular tunnels can lead to high-stress concentrations and significant displacements.</p><p>This article presents a thorough analytical study on the time-dependent ground responses induced by the excavation of noncircular tunnels in transversely isotropic viscoelastic rock masses. The study considers a comprehensive set of engineering factors, including the viscoelastic characteristics of the surrounding rock, any anisotropic angle, and arbitrary tunnel shapes.</p><p>Using the generalized corresponding principle of anisotropic elasticity and anisotropic viscoelasticity, an analytical model is introduced. This model can accurately and swiftly address the problem of deformation and stresses around noncircular tunnels in anisotropic rheological rock masses. The analytical solutions are verified by their good agreement with the Finite Element Method (FEM) results under identical assumptions. Moreover, the qualitative agreement between the analytical solutions and field data further validates the practical application of the analytical solution.</p><p>A parametric analysis is then performed to investigate the effects of anisotropy ratio, anisotropy angle, and coefficient of lateral pressure on stresses and displacements.</p><p>The proposed analytical solutions can help reveal the particular mechanical mechanism of the time-dependent ground responses due to the combination of rock anisotropy and rheology. Furthermore, they can provide a more accurate prediction of the ground response, which may be useful to optimize the design of tunnel excavation in anisotropic rheological rock masses.</p></div>\",\"PeriodicalId\":54941,\"journal\":{\"name\":\"International Journal of Rock Mechanics and Mining Sciences\",\"volume\":\"182 \",\"pages\":\"Article 105880\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Rock Mechanics and Mining Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1365160924002454\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Rock Mechanics and Mining Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1365160924002454","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Analytical solutions of noncircular tunnels in transversely isotropic rheological rock masses
In the field of tunnelling applications, it is often found that the rock masses exhibit anisotropy and rheological properties. To optimize the utilization of underground space, the use of noncircular tunnels is often preferred. However, it is important to note that these noncircular tunnels can lead to high-stress concentrations and significant displacements.
This article presents a thorough analytical study on the time-dependent ground responses induced by the excavation of noncircular tunnels in transversely isotropic viscoelastic rock masses. The study considers a comprehensive set of engineering factors, including the viscoelastic characteristics of the surrounding rock, any anisotropic angle, and arbitrary tunnel shapes.
Using the generalized corresponding principle of anisotropic elasticity and anisotropic viscoelasticity, an analytical model is introduced. This model can accurately and swiftly address the problem of deformation and stresses around noncircular tunnels in anisotropic rheological rock masses. The analytical solutions are verified by their good agreement with the Finite Element Method (FEM) results under identical assumptions. Moreover, the qualitative agreement between the analytical solutions and field data further validates the practical application of the analytical solution.
A parametric analysis is then performed to investigate the effects of anisotropy ratio, anisotropy angle, and coefficient of lateral pressure on stresses and displacements.
The proposed analytical solutions can help reveal the particular mechanical mechanism of the time-dependent ground responses due to the combination of rock anisotropy and rheology. Furthermore, they can provide a more accurate prediction of the ground response, which may be useful to optimize the design of tunnel excavation in anisotropic rheological rock masses.
期刊介绍:
The International Journal of Rock Mechanics and Mining Sciences focuses on original research, new developments, site measurements, and case studies within the fields of rock mechanics and rock engineering. Serving as an international platform, it showcases high-quality papers addressing rock mechanics and the application of its principles and techniques in mining and civil engineering projects situated on or within rock masses. These projects encompass a wide range, including slopes, open-pit mines, quarries, shafts, tunnels, caverns, underground mines, metro systems, dams, hydro-electric stations, geothermal energy, petroleum engineering, and radioactive waste disposal. The journal welcomes submissions on various topics, with particular interest in theoretical advancements, analytical and numerical methods, rock testing, site investigation, and case studies.