{"title":"以原型为导向,提炼自我知识,进行少量细分","authors":"Yadang Chen , Xinyu Xu , Chenchen Wei , Chuhan Lu","doi":"10.1016/j.image.2024.117186","DOIUrl":null,"url":null,"abstract":"<div><p>Few-shot segmentation was proposed to obtain segmentation results for a image with an unseen class by referring to a few labeled samples. However, due to the limited number of samples, many few-shot segmentation models suffer from poor generalization. Prototypical network-based few-shot segmentation still has issues with spatial inconsistency and prototype bias. Since the target class has different appearance in each image, some specific features in the prototypes generated from the support image and its mask do not accurately reflect the generalized features of the target class. To address the support prototype consistency issue, we put forward two modules: Data Augmentation Self-knowledge Distillation (DASKD) and Prototype-wise Regularization (PWR). The DASKD module focuses on enhancing spatial consistency by using data augmentation and self-knowledge distillation. Self-knowledge distillation helps the model acquire generalized features of the target class and learn hidden knowledge from the support images. The PWR module focuses on obtaining a more representative support prototype by conducting prototype-level loss to obtain support prototypes closer to the category center. Broad evaluation experiments on PASCAL-<span><math><msup><mrow><mn>5</mn></mrow><mrow><mi>i</mi></mrow></msup></math></span> and COCO-<span><math><mrow><mn>2</mn><msup><mrow><mn>0</mn></mrow><mrow><mi>i</mi></mrow></msup></mrow></math></span> demonstrate that our model outperforms the prior works on few-shot segmentation. Our approach surpasses the state of the art by 7.5% in PASCAL-<span><math><msup><mrow><mn>5</mn></mrow><mrow><mi>i</mi></mrow></msup></math></span> and 4.2% in COCO-<span><math><mrow><mn>2</mn><msup><mrow><mn>0</mn></mrow><mrow><mi>i</mi></mrow></msup></mrow></math></span>.</p></div>","PeriodicalId":49521,"journal":{"name":"Signal Processing-Image Communication","volume":"129 ","pages":"Article 117186"},"PeriodicalIF":3.4000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prototype-wise self-knowledge distillation for few-shot segmentation\",\"authors\":\"Yadang Chen , Xinyu Xu , Chenchen Wei , Chuhan Lu\",\"doi\":\"10.1016/j.image.2024.117186\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Few-shot segmentation was proposed to obtain segmentation results for a image with an unseen class by referring to a few labeled samples. However, due to the limited number of samples, many few-shot segmentation models suffer from poor generalization. Prototypical network-based few-shot segmentation still has issues with spatial inconsistency and prototype bias. Since the target class has different appearance in each image, some specific features in the prototypes generated from the support image and its mask do not accurately reflect the generalized features of the target class. To address the support prototype consistency issue, we put forward two modules: Data Augmentation Self-knowledge Distillation (DASKD) and Prototype-wise Regularization (PWR). The DASKD module focuses on enhancing spatial consistency by using data augmentation and self-knowledge distillation. Self-knowledge distillation helps the model acquire generalized features of the target class and learn hidden knowledge from the support images. The PWR module focuses on obtaining a more representative support prototype by conducting prototype-level loss to obtain support prototypes closer to the category center. Broad evaluation experiments on PASCAL-<span><math><msup><mrow><mn>5</mn></mrow><mrow><mi>i</mi></mrow></msup></math></span> and COCO-<span><math><mrow><mn>2</mn><msup><mrow><mn>0</mn></mrow><mrow><mi>i</mi></mrow></msup></mrow></math></span> demonstrate that our model outperforms the prior works on few-shot segmentation. Our approach surpasses the state of the art by 7.5% in PASCAL-<span><math><msup><mrow><mn>5</mn></mrow><mrow><mi>i</mi></mrow></msup></math></span> and 4.2% in COCO-<span><math><mrow><mn>2</mn><msup><mrow><mn>0</mn></mrow><mrow><mi>i</mi></mrow></msup></mrow></math></span>.</p></div>\",\"PeriodicalId\":49521,\"journal\":{\"name\":\"Signal Processing-Image Communication\",\"volume\":\"129 \",\"pages\":\"Article 117186\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Signal Processing-Image Communication\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0923596524000870\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing-Image Communication","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0923596524000870","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Prototype-wise self-knowledge distillation for few-shot segmentation
Few-shot segmentation was proposed to obtain segmentation results for a image with an unseen class by referring to a few labeled samples. However, due to the limited number of samples, many few-shot segmentation models suffer from poor generalization. Prototypical network-based few-shot segmentation still has issues with spatial inconsistency and prototype bias. Since the target class has different appearance in each image, some specific features in the prototypes generated from the support image and its mask do not accurately reflect the generalized features of the target class. To address the support prototype consistency issue, we put forward two modules: Data Augmentation Self-knowledge Distillation (DASKD) and Prototype-wise Regularization (PWR). The DASKD module focuses on enhancing spatial consistency by using data augmentation and self-knowledge distillation. Self-knowledge distillation helps the model acquire generalized features of the target class and learn hidden knowledge from the support images. The PWR module focuses on obtaining a more representative support prototype by conducting prototype-level loss to obtain support prototypes closer to the category center. Broad evaluation experiments on PASCAL- and COCO- demonstrate that our model outperforms the prior works on few-shot segmentation. Our approach surpasses the state of the art by 7.5% in PASCAL- and 4.2% in COCO-.
期刊介绍:
Signal Processing: Image Communication is an international journal for the development of the theory and practice of image communication. Its primary objectives are the following:
To present a forum for the advancement of theory and practice of image communication.
To stimulate cross-fertilization between areas similar in nature which have traditionally been separated, for example, various aspects of visual communications and information systems.
To contribute to a rapid information exchange between the industrial and academic environments.
The editorial policy and the technical content of the journal are the responsibility of the Editor-in-Chief, the Area Editors and the Advisory Editors. The Journal is self-supporting from subscription income and contains a minimum amount of advertisements. Advertisements are subject to the prior approval of the Editor-in-Chief. The journal welcomes contributions from every country in the world.
Signal Processing: Image Communication publishes articles relating to aspects of the design, implementation and use of image communication systems. The journal features original research work, tutorial and review articles, and accounts of practical developments.
Subjects of interest include image/video coding, 3D video representations and compression, 3D graphics and animation compression, HDTV and 3DTV systems, video adaptation, video over IP, peer-to-peer video networking, interactive visual communication, multi-user video conferencing, wireless video broadcasting and communication, visual surveillance, 2D and 3D image/video quality measures, pre/post processing, video restoration and super-resolution, multi-camera video analysis, motion analysis, content-based image/video indexing and retrieval, face and gesture processing, video synthesis, 2D and 3D image/video acquisition and display technologies, architectures for image/video processing and communication.