{"title":"利用空间注意力和挤压-激发网络作为分类器和分割编码器检测病理性近视的智能手机应用程序","authors":"Sarvat Ali, Shital Raut","doi":"10.1002/ima.23157","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Pathological myopia (PM) is a worldwide visual health concern that can cause irreversible vision impairment. It affects up to 20 crore population, causing social and economic burdens. Initial screening of PM using computer-aided diagnosis (CAD) can prevent loss of time and finances for intricate treatments later on. Current research works utilizes complex models that are too resource-intensive or lack explanations behind the categorizations. To emphasize the significance of artificial intelligence for the ophthalmic usage and address the limitations of the current studies, we have designed a mobile-compatible application for smartphone users to detect PM. For this purpose, we have developed a lightweight model, using the enhanced MobileNetV3 architecture integrated with spatial attention (SA) and squeeze-excitation (SE) modules to effectively capture lesion location and channel features. To demonstrate its robustness, the model is tested against three heterogeneous datasets namely PALM, RFMID, and ODIR reporting the area under curve (AUC) score of 0.9983, 0.95, and 0.94, respectively. In order to support PM categorization and demonstrate its correlation with the associated lesions, we have segmented different forms of PM lesion atrophy, which gave us intersection over union (IOU) scores of 0.96 and fscore of 0.97 using the same SA+SE inclusive MobileNetV3 as an encoder. This lesion segmentation can aid ophthalmologists in further analysis and treatment. The optimized and explainable model version is calibrated to develop the smartphone application, which can identify fundus image as PM or normal vision. This app is appropriate for ophthalmologists seeking second opinions or by rural general practitioners to refer PM cases to specialists.</p>\n </div>","PeriodicalId":14027,"journal":{"name":"International Journal of Imaging Systems and Technology","volume":"34 5","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Smartphone App to Detect Pathological Myopia Using Spatial Attention and Squeeze-Excitation Network as a Classifier and Segmentation Encoder\",\"authors\":\"Sarvat Ali, Shital Raut\",\"doi\":\"10.1002/ima.23157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Pathological myopia (PM) is a worldwide visual health concern that can cause irreversible vision impairment. It affects up to 20 crore population, causing social and economic burdens. Initial screening of PM using computer-aided diagnosis (CAD) can prevent loss of time and finances for intricate treatments later on. Current research works utilizes complex models that are too resource-intensive or lack explanations behind the categorizations. To emphasize the significance of artificial intelligence for the ophthalmic usage and address the limitations of the current studies, we have designed a mobile-compatible application for smartphone users to detect PM. For this purpose, we have developed a lightweight model, using the enhanced MobileNetV3 architecture integrated with spatial attention (SA) and squeeze-excitation (SE) modules to effectively capture lesion location and channel features. To demonstrate its robustness, the model is tested against three heterogeneous datasets namely PALM, RFMID, and ODIR reporting the area under curve (AUC) score of 0.9983, 0.95, and 0.94, respectively. In order to support PM categorization and demonstrate its correlation with the associated lesions, we have segmented different forms of PM lesion atrophy, which gave us intersection over union (IOU) scores of 0.96 and fscore of 0.97 using the same SA+SE inclusive MobileNetV3 as an encoder. This lesion segmentation can aid ophthalmologists in further analysis and treatment. The optimized and explainable model version is calibrated to develop the smartphone application, which can identify fundus image as PM or normal vision. This app is appropriate for ophthalmologists seeking second opinions or by rural general practitioners to refer PM cases to specialists.</p>\\n </div>\",\"PeriodicalId\":14027,\"journal\":{\"name\":\"International Journal of Imaging Systems and Technology\",\"volume\":\"34 5\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Imaging Systems and Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ima.23157\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Imaging Systems and Technology","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ima.23157","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Smartphone App to Detect Pathological Myopia Using Spatial Attention and Squeeze-Excitation Network as a Classifier and Segmentation Encoder
Pathological myopia (PM) is a worldwide visual health concern that can cause irreversible vision impairment. It affects up to 20 crore population, causing social and economic burdens. Initial screening of PM using computer-aided diagnosis (CAD) can prevent loss of time and finances for intricate treatments later on. Current research works utilizes complex models that are too resource-intensive or lack explanations behind the categorizations. To emphasize the significance of artificial intelligence for the ophthalmic usage and address the limitations of the current studies, we have designed a mobile-compatible application for smartphone users to detect PM. For this purpose, we have developed a lightweight model, using the enhanced MobileNetV3 architecture integrated with spatial attention (SA) and squeeze-excitation (SE) modules to effectively capture lesion location and channel features. To demonstrate its robustness, the model is tested against three heterogeneous datasets namely PALM, RFMID, and ODIR reporting the area under curve (AUC) score of 0.9983, 0.95, and 0.94, respectively. In order to support PM categorization and demonstrate its correlation with the associated lesions, we have segmented different forms of PM lesion atrophy, which gave us intersection over union (IOU) scores of 0.96 and fscore of 0.97 using the same SA+SE inclusive MobileNetV3 as an encoder. This lesion segmentation can aid ophthalmologists in further analysis and treatment. The optimized and explainable model version is calibrated to develop the smartphone application, which can identify fundus image as PM or normal vision. This app is appropriate for ophthalmologists seeking second opinions or by rural general practitioners to refer PM cases to specialists.
期刊介绍:
The International Journal of Imaging Systems and Technology (IMA) is a forum for the exchange of ideas and results relevant to imaging systems, including imaging physics and informatics. The journal covers all imaging modalities in humans and animals.
IMA accepts technically sound and scientifically rigorous research in the interdisciplinary field of imaging, including relevant algorithmic research and hardware and software development, and their applications relevant to medical research. The journal provides a platform to publish original research in structural and functional imaging.
The journal is also open to imaging studies of the human body and on animals that describe novel diagnostic imaging and analyses methods. Technical, theoretical, and clinical research in both normal and clinical populations is encouraged. Submissions describing methods, software, databases, replication studies as well as negative results are also considered.
The scope of the journal includes, but is not limited to, the following in the context of biomedical research:
Imaging and neuro-imaging modalities: structural MRI, functional MRI, PET, SPECT, CT, ultrasound, EEG, MEG, NIRS etc.;
Neuromodulation and brain stimulation techniques such as TMS and tDCS;
Software and hardware for imaging, especially related to human and animal health;
Image segmentation in normal and clinical populations;
Pattern analysis and classification using machine learning techniques;
Computational modeling and analysis;
Brain connectivity and connectomics;
Systems-level characterization of brain function;
Neural networks and neurorobotics;
Computer vision, based on human/animal physiology;
Brain-computer interface (BCI) technology;
Big data, databasing and data mining.