Bendjillali Ridha Ilyas, Bendelhoum Mohammed Sofiane, Tadjeddine Ali Abderrazak, Kamline Miloud
{"title":"利用 EfficientNet-B7 驱动的深度学习波束成形技术增强 5G 大规模 MIMO 系统","authors":"Bendjillali Ridha Ilyas, Bendelhoum Mohammed Sofiane, Tadjeddine Ali Abderrazak, Kamline Miloud","doi":"10.1002/ett.5034","DOIUrl":null,"url":null,"abstract":"<p>The development of wireless communication systems is a challenging and constantly evolving field and the issue of gaining optimal performance is of utmost importance. This work intends to give a thorough and detailed description of massive MIMO technology and its properties, with a significant emphasis on digital beamforming (FDB) and hybrid beamforming (HBF) techniques and the potential of combining them with the most recent and exciting frontier of research: deep learning. On one hand, FDB provides accurate signal control but, on the other hand, it deals with substantial needs like high-power consumption. This challenge makes the focus shift to HBF—the innovative technology successfully coupled with deep learning's powerful potential. The chosen research explores extensively the major areas of application and compatibility of this operating mode in a diverse range of operational situations in the interference environment as well as in different levels of noise conditions. Moreover, the study offers a comprehensive comparison, which is highly effective in exploring further methods that focus on improving spectral efficiency. Significantly, the “Proposed Method” is suggested to be at the leading position, which demonstrates superior performance. Showing outstanding generalization capability, versatile robustness, and efficiency of usage in the proposed framework rely on EfficientNet-B7 as the major portion. This makes it adaptive to its dynamic surroundings and puts it as a powerful tool in the world of advanced connectivity and massive MIMO technology. Due to its core ability to respond to changes in conditions effectively and efficiently, the proposed framework is seen as one of the most powerful approaches that could be used to change wireless communication systems.</p>","PeriodicalId":23282,"journal":{"name":"Transactions on Emerging Telecommunications Technologies","volume":"35 9","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing 5G massive MIMO systems with EfficientNet-B7-powered deep learning-driven beamforming\",\"authors\":\"Bendjillali Ridha Ilyas, Bendelhoum Mohammed Sofiane, Tadjeddine Ali Abderrazak, Kamline Miloud\",\"doi\":\"10.1002/ett.5034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The development of wireless communication systems is a challenging and constantly evolving field and the issue of gaining optimal performance is of utmost importance. This work intends to give a thorough and detailed description of massive MIMO technology and its properties, with a significant emphasis on digital beamforming (FDB) and hybrid beamforming (HBF) techniques and the potential of combining them with the most recent and exciting frontier of research: deep learning. On one hand, FDB provides accurate signal control but, on the other hand, it deals with substantial needs like high-power consumption. This challenge makes the focus shift to HBF—the innovative technology successfully coupled with deep learning's powerful potential. The chosen research explores extensively the major areas of application and compatibility of this operating mode in a diverse range of operational situations in the interference environment as well as in different levels of noise conditions. Moreover, the study offers a comprehensive comparison, which is highly effective in exploring further methods that focus on improving spectral efficiency. Significantly, the “Proposed Method” is suggested to be at the leading position, which demonstrates superior performance. Showing outstanding generalization capability, versatile robustness, and efficiency of usage in the proposed framework rely on EfficientNet-B7 as the major portion. This makes it adaptive to its dynamic surroundings and puts it as a powerful tool in the world of advanced connectivity and massive MIMO technology. Due to its core ability to respond to changes in conditions effectively and efficiently, the proposed framework is seen as one of the most powerful approaches that could be used to change wireless communication systems.</p>\",\"PeriodicalId\":23282,\"journal\":{\"name\":\"Transactions on Emerging Telecommunications Technologies\",\"volume\":\"35 9\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions on Emerging Telecommunications Technologies\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ett.5034\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions on Emerging Telecommunications Technologies","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ett.5034","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
Enhancing 5G massive MIMO systems with EfficientNet-B7-powered deep learning-driven beamforming
The development of wireless communication systems is a challenging and constantly evolving field and the issue of gaining optimal performance is of utmost importance. This work intends to give a thorough and detailed description of massive MIMO technology and its properties, with a significant emphasis on digital beamforming (FDB) and hybrid beamforming (HBF) techniques and the potential of combining them with the most recent and exciting frontier of research: deep learning. On one hand, FDB provides accurate signal control but, on the other hand, it deals with substantial needs like high-power consumption. This challenge makes the focus shift to HBF—the innovative technology successfully coupled with deep learning's powerful potential. The chosen research explores extensively the major areas of application and compatibility of this operating mode in a diverse range of operational situations in the interference environment as well as in different levels of noise conditions. Moreover, the study offers a comprehensive comparison, which is highly effective in exploring further methods that focus on improving spectral efficiency. Significantly, the “Proposed Method” is suggested to be at the leading position, which demonstrates superior performance. Showing outstanding generalization capability, versatile robustness, and efficiency of usage in the proposed framework rely on EfficientNet-B7 as the major portion. This makes it adaptive to its dynamic surroundings and puts it as a powerful tool in the world of advanced connectivity and massive MIMO technology. Due to its core ability to respond to changes in conditions effectively and efficiently, the proposed framework is seen as one of the most powerful approaches that could be used to change wireless communication systems.
期刊介绍:
ransactions on Emerging Telecommunications Technologies (ETT), formerly known as European Transactions on Telecommunications (ETT), has the following aims:
- to attract cutting-edge publications from leading researchers and research groups around the world
- to become a highly cited source of timely research findings in emerging fields of telecommunications
- to limit revision and publication cycles to a few months and thus significantly increase attractiveness to publish
- to become the leading journal for publishing the latest developments in telecommunications