Sarah E. Rothenberg, Susan A. Korrick, Donald Harrington, Sally W. Thurston, Sarah E. Janssen, Michael T. Tate, YanFen Nong, Hua Nong, Jihong Liu, Chuan Hong and Fengxiu Ouyang
{"title":"毛发汞同位素是膳食甲基汞暴露和生物吸收的非侵入性生物标志物。","authors":"Sarah E. Rothenberg, Susan A. Korrick, Donald Harrington, Sally W. Thurston, Sarah E. Janssen, Michael T. Tate, YanFen Nong, Hua Nong, Jihong Liu, Chuan Hong and Fengxiu Ouyang","doi":"10.1039/D4EM00231H","DOIUrl":null,"url":null,"abstract":"<p >\r\n <em>Background</em>. Fish and rice are the main dietary sources of methylmercury (MeHg); however, rice does not contain the same beneficial nutrients as fish, and these differences can impact the observed health effects of MeHg. Hence, it is important to validate a biomarker, which can distinguish among dietary MeHg sources. <em>Methods</em>. Mercury (Hg) stable isotopes were analyzed in hair samples from peripartum mothers in China (<em>n</em> = 265). Associations between mass dependent fractionation (MDF) (<em>δ</em><small><sup>202</sup></small>Hg) and mass independent fractionation (MIF) (<em>Δ</em><small><sup>199</sup></small>Hg) (dependent variables) and dietary MeHg intake (independent variable) were investigated using multivariable regression models. <em>Results</em>. In adjusted models, hair <em>Δ</em><small><sup>199</sup></small>Hg was positively correlated with serum omega-3 fatty acids (a biomarker for fish consumption) and negatively correlated with maternal rice MeHg intake, indicating MIF recorded in hair can be used to distinguish MeHg intake predominantly from fish <em>versus</em> rice. Conversely, in adjusted models, hair <em>δ</em><small><sup>202</sup></small>Hg was not correlated with measures of dietary measures of MeHg intake. Instead, hair <em>δ</em><small><sup>202</sup></small>Hg was strongly, negatively correlated with hair Hg, which explained 27–29% of the variability in hair <em>δ</em><small><sup>202</sup></small>Hg. <em>Conclusions</em>. Our results indicated that hair <em>Δ</em><small><sup>199</sup></small>Hg can be used to distinguish MeHg intake from fish <em>versus</em> rice. Results also suggested that lighter isotopes were preferentially accumulated in hair, potentially reflecting Hg binding to thiols (<em>i.e.</em>, cysteine); however, more research is needed to elucidate this hypothesis. Broader impacts include 1) validation of a non-invasive biomarker to distinguish MeHg intake from rice <em>versus</em> fish, and 2) the potential to use Hg isotopes to investigate Hg binding in tissues.</p>","PeriodicalId":74,"journal":{"name":"Environmental Science: Processes & Impacts","volume":" 11","pages":" 1975-1985"},"PeriodicalIF":4.3000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hair mercury isotopes, a noninvasive biomarker for dietary methylmercury exposure and biological uptake†\",\"authors\":\"Sarah E. Rothenberg, Susan A. Korrick, Donald Harrington, Sally W. Thurston, Sarah E. Janssen, Michael T. Tate, YanFen Nong, Hua Nong, Jihong Liu, Chuan Hong and Fengxiu Ouyang\",\"doi\":\"10.1039/D4EM00231H\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >\\r\\n <em>Background</em>. Fish and rice are the main dietary sources of methylmercury (MeHg); however, rice does not contain the same beneficial nutrients as fish, and these differences can impact the observed health effects of MeHg. Hence, it is important to validate a biomarker, which can distinguish among dietary MeHg sources. <em>Methods</em>. Mercury (Hg) stable isotopes were analyzed in hair samples from peripartum mothers in China (<em>n</em> = 265). Associations between mass dependent fractionation (MDF) (<em>δ</em><small><sup>202</sup></small>Hg) and mass independent fractionation (MIF) (<em>Δ</em><small><sup>199</sup></small>Hg) (dependent variables) and dietary MeHg intake (independent variable) were investigated using multivariable regression models. <em>Results</em>. In adjusted models, hair <em>Δ</em><small><sup>199</sup></small>Hg was positively correlated with serum omega-3 fatty acids (a biomarker for fish consumption) and negatively correlated with maternal rice MeHg intake, indicating MIF recorded in hair can be used to distinguish MeHg intake predominantly from fish <em>versus</em> rice. Conversely, in adjusted models, hair <em>δ</em><small><sup>202</sup></small>Hg was not correlated with measures of dietary measures of MeHg intake. Instead, hair <em>δ</em><small><sup>202</sup></small>Hg was strongly, negatively correlated with hair Hg, which explained 27–29% of the variability in hair <em>δ</em><small><sup>202</sup></small>Hg. <em>Conclusions</em>. Our results indicated that hair <em>Δ</em><small><sup>199</sup></small>Hg can be used to distinguish MeHg intake from fish <em>versus</em> rice. Results also suggested that lighter isotopes were preferentially accumulated in hair, potentially reflecting Hg binding to thiols (<em>i.e.</em>, cysteine); however, more research is needed to elucidate this hypothesis. Broader impacts include 1) validation of a non-invasive biomarker to distinguish MeHg intake from rice <em>versus</em> fish, and 2) the potential to use Hg isotopes to investigate Hg binding in tissues.</p>\",\"PeriodicalId\":74,\"journal\":{\"name\":\"Environmental Science: Processes & Impacts\",\"volume\":\" 11\",\"pages\":\" 1975-1985\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Science: Processes & Impacts\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/em/d4em00231h\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science: Processes & Impacts","FirstCategoryId":"93","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/em/d4em00231h","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Hair mercury isotopes, a noninvasive biomarker for dietary methylmercury exposure and biological uptake†
Background. Fish and rice are the main dietary sources of methylmercury (MeHg); however, rice does not contain the same beneficial nutrients as fish, and these differences can impact the observed health effects of MeHg. Hence, it is important to validate a biomarker, which can distinguish among dietary MeHg sources. Methods. Mercury (Hg) stable isotopes were analyzed in hair samples from peripartum mothers in China (n = 265). Associations between mass dependent fractionation (MDF) (δ202Hg) and mass independent fractionation (MIF) (Δ199Hg) (dependent variables) and dietary MeHg intake (independent variable) were investigated using multivariable regression models. Results. In adjusted models, hair Δ199Hg was positively correlated with serum omega-3 fatty acids (a biomarker for fish consumption) and negatively correlated with maternal rice MeHg intake, indicating MIF recorded in hair can be used to distinguish MeHg intake predominantly from fish versus rice. Conversely, in adjusted models, hair δ202Hg was not correlated with measures of dietary measures of MeHg intake. Instead, hair δ202Hg was strongly, negatively correlated with hair Hg, which explained 27–29% of the variability in hair δ202Hg. Conclusions. Our results indicated that hair Δ199Hg can be used to distinguish MeHg intake from fish versus rice. Results also suggested that lighter isotopes were preferentially accumulated in hair, potentially reflecting Hg binding to thiols (i.e., cysteine); however, more research is needed to elucidate this hypothesis. Broader impacts include 1) validation of a non-invasive biomarker to distinguish MeHg intake from rice versus fish, and 2) the potential to use Hg isotopes to investigate Hg binding in tissues.
期刊介绍:
Environmental Science: Processes & Impacts publishes high quality papers in all areas of the environmental chemical sciences, including chemistry of the air, water, soil and sediment. We welcome studies on the environmental fate and effects of anthropogenic and naturally occurring contaminants, both chemical and microbiological, as well as related natural element cycling processes.