基于血液的认知障碍和痴呆症多变量甲基化风险评分。

IF 13 1区 医学 Q1 CLINICAL NEUROLOGY Alzheimer's & Dementia Pub Date : 2024-08-28 DOI:10.1002/alz.14061
Jarno Koetsier, Rachel Cavill, Rick Reijnders, Joshua Harvey, Jan Homann, Morteza Kouhsar, Kay Deckers, Sebastian Köhler, Lars M. T. Eijssen, Daniel L. A. van den Hove, Ilja Demuth, Sandra Düzel, for the Alzheimer's Disease Neuroimaging Initiative, Rebecca G. Smith, Adam R. Smith, Joe Burrage, Emma M. Walker, Gemma Shireby, Eilis Hannon, Emma Dempster, Tim Frayling, Jonathan Mill, Valerija Dobricic, Peter Johannsen, Michael Wittig, Andre Franke, Rik Vandenberghe, Jolien Schaeverbeke, Yvonne Freund-Levi, Lutz Frölich, Philip Scheltens, Charlotte E. Teunissen, Giovanni Frisoni, Olivier Blin, Jill C. Richardson, Régis Bordet, Sebastiaan Engelborghs, Ellen de Roeck, Pablo Martinez-Lage, Mikel Tainta, Alberto Lleó, Isabel Sala, Julius Popp, Gwendoline Peyratout, Frans Verhey, Magda Tsolaki, Ulf Andreasson, Kaj Blennow, Henrik Zetterberg, Johannes Streffer, Stephanie J. B. Vos, Simon Lovestone, Pieter-Jelle Visser, Christina M. Lill, Lars Bertram, Katie Lunnon, Ehsan Pishva
{"title":"基于血液的认知障碍和痴呆症多变量甲基化风险评分。","authors":"Jarno Koetsier,&nbsp;Rachel Cavill,&nbsp;Rick Reijnders,&nbsp;Joshua Harvey,&nbsp;Jan Homann,&nbsp;Morteza Kouhsar,&nbsp;Kay Deckers,&nbsp;Sebastian Köhler,&nbsp;Lars M. T. Eijssen,&nbsp;Daniel L. A. van den Hove,&nbsp;Ilja Demuth,&nbsp;Sandra Düzel,&nbsp;for the Alzheimer's Disease Neuroimaging Initiative,&nbsp;Rebecca G. Smith,&nbsp;Adam R. Smith,&nbsp;Joe Burrage,&nbsp;Emma M. Walker,&nbsp;Gemma Shireby,&nbsp;Eilis Hannon,&nbsp;Emma Dempster,&nbsp;Tim Frayling,&nbsp;Jonathan Mill,&nbsp;Valerija Dobricic,&nbsp;Peter Johannsen,&nbsp;Michael Wittig,&nbsp;Andre Franke,&nbsp;Rik Vandenberghe,&nbsp;Jolien Schaeverbeke,&nbsp;Yvonne Freund-Levi,&nbsp;Lutz Frölich,&nbsp;Philip Scheltens,&nbsp;Charlotte E. Teunissen,&nbsp;Giovanni Frisoni,&nbsp;Olivier Blin,&nbsp;Jill C. Richardson,&nbsp;Régis Bordet,&nbsp;Sebastiaan Engelborghs,&nbsp;Ellen de Roeck,&nbsp;Pablo Martinez-Lage,&nbsp;Mikel Tainta,&nbsp;Alberto Lleó,&nbsp;Isabel Sala,&nbsp;Julius Popp,&nbsp;Gwendoline Peyratout,&nbsp;Frans Verhey,&nbsp;Magda Tsolaki,&nbsp;Ulf Andreasson,&nbsp;Kaj Blennow,&nbsp;Henrik Zetterberg,&nbsp;Johannes Streffer,&nbsp;Stephanie J. B. Vos,&nbsp;Simon Lovestone,&nbsp;Pieter-Jelle Visser,&nbsp;Christina M. Lill,&nbsp;Lars Bertram,&nbsp;Katie Lunnon,&nbsp;Ehsan Pishva","doi":"10.1002/alz.14061","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> INTRODUCTION</h3>\n \n <p>The established link between DNA methylation and pathophysiology of dementia, along with its potential role as a molecular mediator of lifestyle and environmental influences, positions blood-derived DNA methylation as a promising tool for early dementia risk detection.</p>\n </section>\n \n <section>\n \n <h3> METHODS</h3>\n \n <p>In conjunction with an extensive array of machine learning techniques, we employed whole blood genome-wide DNA methylation data as a surrogate for 14 modifiable and non-modifiable factors in the assessment of dementia risk in independent dementia cohorts.</p>\n </section>\n \n <section>\n \n <h3> RESULTS</h3>\n \n <p>We established a multivariate methylation risk score (MMRS) for identifying mild cognitive impairment cross-sectionally, independent of age and sex (<i>P</i> = 2.0 × 10<sup>−3</sup>). This score significantly predicted the prospective development of cognitive impairments in independent studies of Alzheimer's disease (hazard ratio for Rey's Auditory Verbal Learning Test (RAVLT)-Learning = 2.47) and Parkinson's disease (hazard ratio for MCI/dementia<sub> </sub>= 2.59).</p>\n </section>\n \n <section>\n \n <h3> DISCUSSION</h3>\n \n <p>Our work shows the potential of employing blood-derived DNA methylation data in the assessment of dementia risk.</p>\n </section>\n \n <section>\n \n <h3> Highlights</h3>\n \n <div>\n <ul>\n \n <li>We used whole blood DNA methylation as a surrogate for 14 dementia risk factors.</li>\n \n <li>Created a multivariate methylation risk score for predicting cognitive impairment.</li>\n \n <li>Emphasized the role of machine learning and omics data in predicting dementia.</li>\n \n <li>The score predicts cognitive impairment development at the population level.</li>\n </ul>\n </div>\n </section>\n </div>","PeriodicalId":7471,"journal":{"name":"Alzheimer's & Dementia","volume":null,"pages":null},"PeriodicalIF":13.0000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/alz.14061","citationCount":"0","resultStr":"{\"title\":\"Blood-based multivariate methylation risk score for cognitive impairment and dementia\",\"authors\":\"Jarno Koetsier,&nbsp;Rachel Cavill,&nbsp;Rick Reijnders,&nbsp;Joshua Harvey,&nbsp;Jan Homann,&nbsp;Morteza Kouhsar,&nbsp;Kay Deckers,&nbsp;Sebastian Köhler,&nbsp;Lars M. T. Eijssen,&nbsp;Daniel L. A. van den Hove,&nbsp;Ilja Demuth,&nbsp;Sandra Düzel,&nbsp;for the Alzheimer's Disease Neuroimaging Initiative,&nbsp;Rebecca G. Smith,&nbsp;Adam R. Smith,&nbsp;Joe Burrage,&nbsp;Emma M. Walker,&nbsp;Gemma Shireby,&nbsp;Eilis Hannon,&nbsp;Emma Dempster,&nbsp;Tim Frayling,&nbsp;Jonathan Mill,&nbsp;Valerija Dobricic,&nbsp;Peter Johannsen,&nbsp;Michael Wittig,&nbsp;Andre Franke,&nbsp;Rik Vandenberghe,&nbsp;Jolien Schaeverbeke,&nbsp;Yvonne Freund-Levi,&nbsp;Lutz Frölich,&nbsp;Philip Scheltens,&nbsp;Charlotte E. Teunissen,&nbsp;Giovanni Frisoni,&nbsp;Olivier Blin,&nbsp;Jill C. Richardson,&nbsp;Régis Bordet,&nbsp;Sebastiaan Engelborghs,&nbsp;Ellen de Roeck,&nbsp;Pablo Martinez-Lage,&nbsp;Mikel Tainta,&nbsp;Alberto Lleó,&nbsp;Isabel Sala,&nbsp;Julius Popp,&nbsp;Gwendoline Peyratout,&nbsp;Frans Verhey,&nbsp;Magda Tsolaki,&nbsp;Ulf Andreasson,&nbsp;Kaj Blennow,&nbsp;Henrik Zetterberg,&nbsp;Johannes Streffer,&nbsp;Stephanie J. B. Vos,&nbsp;Simon Lovestone,&nbsp;Pieter-Jelle Visser,&nbsp;Christina M. Lill,&nbsp;Lars Bertram,&nbsp;Katie Lunnon,&nbsp;Ehsan Pishva\",\"doi\":\"10.1002/alz.14061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> INTRODUCTION</h3>\\n \\n <p>The established link between DNA methylation and pathophysiology of dementia, along with its potential role as a molecular mediator of lifestyle and environmental influences, positions blood-derived DNA methylation as a promising tool for early dementia risk detection.</p>\\n </section>\\n \\n <section>\\n \\n <h3> METHODS</h3>\\n \\n <p>In conjunction with an extensive array of machine learning techniques, we employed whole blood genome-wide DNA methylation data as a surrogate for 14 modifiable and non-modifiable factors in the assessment of dementia risk in independent dementia cohorts.</p>\\n </section>\\n \\n <section>\\n \\n <h3> RESULTS</h3>\\n \\n <p>We established a multivariate methylation risk score (MMRS) for identifying mild cognitive impairment cross-sectionally, independent of age and sex (<i>P</i> = 2.0 × 10<sup>−3</sup>). This score significantly predicted the prospective development of cognitive impairments in independent studies of Alzheimer's disease (hazard ratio for Rey's Auditory Verbal Learning Test (RAVLT)-Learning = 2.47) and Parkinson's disease (hazard ratio for MCI/dementia<sub> </sub>= 2.59).</p>\\n </section>\\n \\n <section>\\n \\n <h3> DISCUSSION</h3>\\n \\n <p>Our work shows the potential of employing blood-derived DNA methylation data in the assessment of dementia risk.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Highlights</h3>\\n \\n <div>\\n <ul>\\n \\n <li>We used whole blood DNA methylation as a surrogate for 14 dementia risk factors.</li>\\n \\n <li>Created a multivariate methylation risk score for predicting cognitive impairment.</li>\\n \\n <li>Emphasized the role of machine learning and omics data in predicting dementia.</li>\\n \\n <li>The score predicts cognitive impairment development at the population level.</li>\\n </ul>\\n </div>\\n </section>\\n </div>\",\"PeriodicalId\":7471,\"journal\":{\"name\":\"Alzheimer's & Dementia\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":13.0000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/alz.14061\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Alzheimer's & Dementia\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/alz.14061\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Alzheimer's & Dementia","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/alz.14061","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

简介:DNA甲基化与痴呆症病理生理学之间已建立的联系,以及其作为生活方式和环境影响分子介质的潜在作用,使血液中的DNA甲基化成为早期痴呆症风险检测的一种有前途的工具:结合广泛的机器学习技术,我们采用全血全基因组 DNA 甲基化数据作为 14 个可调节和不可调节因素的替代物,评估独立痴呆队列中的痴呆风险:我们建立了一个多变量甲基化风险评分(MMRS),用于横断面识别轻度认知障碍,不受年龄和性别的影响(P = 2.0 × 10-3)。在对阿尔茨海默病(Rey听觉言语学习测试(RAVLT)-学习的危险比为2.47)和帕金森病(MCI/痴呆的危险比为2.59)的独立研究中,该评分可明显预测认知障碍的前瞻性发展:讨论:我们的研究表明,血液中的DNA甲基化数据具有评估痴呆症风险的潜力:我们使用全血 DNA 甲基化作为 14 种痴呆症风险因素的替代物。创建了预测认知障碍的多变量甲基化风险评分。强调了机器学习和 omics 数据在预测痴呆症中的作用。该评分可在人群水平上预测认知障碍的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Blood-based multivariate methylation risk score for cognitive impairment and dementia

INTRODUCTION

The established link between DNA methylation and pathophysiology of dementia, along with its potential role as a molecular mediator of lifestyle and environmental influences, positions blood-derived DNA methylation as a promising tool for early dementia risk detection.

METHODS

In conjunction with an extensive array of machine learning techniques, we employed whole blood genome-wide DNA methylation data as a surrogate for 14 modifiable and non-modifiable factors in the assessment of dementia risk in independent dementia cohorts.

RESULTS

We established a multivariate methylation risk score (MMRS) for identifying mild cognitive impairment cross-sectionally, independent of age and sex (P = 2.0 × 10−3). This score significantly predicted the prospective development of cognitive impairments in independent studies of Alzheimer's disease (hazard ratio for Rey's Auditory Verbal Learning Test (RAVLT)-Learning = 2.47) and Parkinson's disease (hazard ratio for MCI/dementia = 2.59).

DISCUSSION

Our work shows the potential of employing blood-derived DNA methylation data in the assessment of dementia risk.

Highlights

  • We used whole blood DNA methylation as a surrogate for 14 dementia risk factors.
  • Created a multivariate methylation risk score for predicting cognitive impairment.
  • Emphasized the role of machine learning and omics data in predicting dementia.
  • The score predicts cognitive impairment development at the population level.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Alzheimer's & Dementia
Alzheimer's & Dementia 医学-临床神经学
CiteScore
14.50
自引率
5.00%
发文量
299
审稿时长
3 months
期刊介绍: Alzheimer's & Dementia is a peer-reviewed journal that aims to bridge knowledge gaps in dementia research by covering the entire spectrum, from basic science to clinical trials to social and behavioral investigations. It provides a platform for rapid communication of new findings and ideas, optimal translation of research into practical applications, increasing knowledge across diverse disciplines for early detection, diagnosis, and intervention, and identifying promising new research directions. In July 2008, Alzheimer's & Dementia was accepted for indexing by MEDLINE, recognizing its scientific merit and contribution to Alzheimer's research.
期刊最新文献
Technology that CARES: Enhancing dementia care through everyday technologies SV2A PET shows hippocampal synaptic loss in cognitively unimpaired APOE ε4/ε4 homozygotes 2024 AA criteria for Alzheimer's disease diagnosis: Mainly anchored at Aβ not tau. A short version of the Everyday Cognition scale can predict clinical progression and cognitive decline. Impact of skilled nursing facility quality on Medicare beneficiaries with dementia: Evidence from vacancies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1