用于自主决策机器人的多巴胺生物启发模型

IF 3.4 3区 医学 Q1 ENGINEERING, MULTIDISCIPLINARY Biomimetics Pub Date : 2024-08-21 DOI:10.3390/biomimetics9080504
Marcos Maroto-Gómez, Javier Burguete-Alventosa, Sofía Álvarez-Arias, María Malfaz, Miguel Ángel Salichs
{"title":"用于自主决策机器人的多巴胺生物启发模型","authors":"Marcos Maroto-Gómez, Javier Burguete-Alventosa, Sofía Álvarez-Arias, María Malfaz, Miguel Ángel Salichs","doi":"10.3390/biomimetics9080504","DOIUrl":null,"url":null,"abstract":"<p><p>Decision-making systems allow artificial agents to adapt their behaviours, depending on the information they perceive from the environment and internal processes. Human beings possess unique decision-making capabilities, adapting to current situations and anticipating future challenges. Autonomous robots with adaptive and anticipatory decision-making emulating humans can bring robots with skills that users can understand more easily. Human decisions highly depend on dopamine, a brain substance that regulates motivation and reward, acknowledging positive and negative situations. Considering recent neuroscience studies about the dopamine role in the human brain and its influence on decision-making and motivated behaviour, this paper proposes a model based on how dopamine drives human motivation and decision-making. The model allows robots to behave autonomously in dynamic environments, learning the best action selection strategy and anticipating future rewards. The results show the model's performance in five scenarios, emphasising how dopamine levels vary depending on the robot's situation and stimuli perception. Moreover, we show the model's integration into the Mini social robot to provide insights into how dopamine levels drive motivated autonomous behaviour regulating biologically inspired internal processes emulated in the robot.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11351755/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Bio-Inspired Dopamine Model for Robots with Autonomous Decision-Making.\",\"authors\":\"Marcos Maroto-Gómez, Javier Burguete-Alventosa, Sofía Álvarez-Arias, María Malfaz, Miguel Ángel Salichs\",\"doi\":\"10.3390/biomimetics9080504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Decision-making systems allow artificial agents to adapt their behaviours, depending on the information they perceive from the environment and internal processes. Human beings possess unique decision-making capabilities, adapting to current situations and anticipating future challenges. Autonomous robots with adaptive and anticipatory decision-making emulating humans can bring robots with skills that users can understand more easily. Human decisions highly depend on dopamine, a brain substance that regulates motivation and reward, acknowledging positive and negative situations. Considering recent neuroscience studies about the dopamine role in the human brain and its influence on decision-making and motivated behaviour, this paper proposes a model based on how dopamine drives human motivation and decision-making. The model allows robots to behave autonomously in dynamic environments, learning the best action selection strategy and anticipating future rewards. The results show the model's performance in five scenarios, emphasising how dopamine levels vary depending on the robot's situation and stimuli perception. Moreover, we show the model's integration into the Mini social robot to provide insights into how dopamine levels drive motivated autonomous behaviour regulating biologically inspired internal processes emulated in the robot.</p>\",\"PeriodicalId\":8907,\"journal\":{\"name\":\"Biomimetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11351755/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomimetics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/biomimetics9080504\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics9080504","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

决策系统允许人工代理根据从环境和内部过程中感知到的信息调整自己的行为。人类拥有独特的决策能力,能够适应当前形势并预测未来挑战。仿照人类进行适应性和预测性决策的自主机器人可以让机器人拥有用户更容易理解的技能。人类的决策在很大程度上取决于多巴胺,这是一种调节动机和奖赏、确认积极和消极情况的大脑物质。考虑到最近关于多巴胺在人脑中的作用及其对决策和动机行为的影响的神经科学研究,本文提出了一个基于多巴胺如何驱动人类动机和决策的模型。该模型允许机器人在动态环境中自主行动,学习最佳行动选择策略并预测未来奖励。研究结果显示了该模型在五个场景中的表现,强调了多巴胺水平如何随机器人的处境和刺激感知而变化。此外,我们还展示了该模型与迷你社交机器人的整合情况,让人们深入了解多巴胺水平是如何通过调节机器人仿真的生物内部过程来驱动自主行为的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Bio-Inspired Dopamine Model for Robots with Autonomous Decision-Making.

Decision-making systems allow artificial agents to adapt their behaviours, depending on the information they perceive from the environment and internal processes. Human beings possess unique decision-making capabilities, adapting to current situations and anticipating future challenges. Autonomous robots with adaptive and anticipatory decision-making emulating humans can bring robots with skills that users can understand more easily. Human decisions highly depend on dopamine, a brain substance that regulates motivation and reward, acknowledging positive and negative situations. Considering recent neuroscience studies about the dopamine role in the human brain and its influence on decision-making and motivated behaviour, this paper proposes a model based on how dopamine drives human motivation and decision-making. The model allows robots to behave autonomously in dynamic environments, learning the best action selection strategy and anticipating future rewards. The results show the model's performance in five scenarios, emphasising how dopamine levels vary depending on the robot's situation and stimuli perception. Moreover, we show the model's integration into the Mini social robot to provide insights into how dopamine levels drive motivated autonomous behaviour regulating biologically inspired internal processes emulated in the robot.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomimetics
Biomimetics Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
3.50
自引率
11.10%
发文量
189
审稿时长
11 weeks
期刊最新文献
Brain-Inspired Architecture for Spiking Neural Networks. Explorative Binary Gray Wolf Optimizer with Quadratic Interpolation for Feature Selection. Path Planning of an Unmanned Aerial Vehicle Based on a Multi-Strategy Improved Pelican Optimization Algorithm. Performance Comparison of Bio-Inspired Algorithms for Optimizing an ANN-Based MPPT Forecast for PV Systems. Clinical Applications of Micro/Nanobubble Technology in Neurological Diseases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1