{"title":"沙漠刺猬下调介导γ-谷氨酰环基转移酶敲除对小鼠胶质母细胞瘤干细胞增殖的抑制作用","authors":"Masaya Mori, Hiromi Ii, Mitsugu Fujita, Kozue Nose, Ayako Shimada, Risa Shiraki, Yuhi Sone, Chiami Moyama, Keiko Taniguchi, Susumu Nakata","doi":"10.21873/cgp.20465","DOIUrl":null,"url":null,"abstract":"<p><strong>Background/aim: </strong>Glioblastoma is the most frequent type of adult-onset malignant brain tumor and has a very poor prognosis. Glioblastoma stem cells have been shown to be one of the mechanisms by which glioblastoma acquires therapy resistance. Therefore, there is a need to establish novel therapeutic strategies useful for inhibiting this cell population. γ-Glutamylcyclotransferase (GGCT) is an enzyme involved in the synthesis and metabolism of glutathione, which is highly expressed in a wide range of cancer types, including glioblastoma, and inhibition of its expression has been reported to have antitumor effects on various cancer types. The aim of this study was to clarify the function of GGCT in glioblastoma stem cells.</p><p><strong>Materials and methods: </strong>We searched for pathways affected by GGCT overexpression in mouse embryonic fibroblasts NIH-3T3 by comprehensive gene expression analysis. Knockdown of GGCT and overexpression of desert hedgehog (DHH), a representative ligand of the pathway, were performed in glioblastoma stem cells derived from a mouse glioblastoma model.</p><p><strong>Results: </strong>GGCT overexpression activated the hedgehog pathway. Knockdown of GGCT inhibited proliferation of glioblastoma stem cells and reduced expression of DHH and the downstream target GLI family zinc finger 1 (GLI1). DHH overexpression significantly restored the growth-suppressive effect of GGCT knockdown.</p><p><strong>Conclusion: </strong>High GGCT expression is important for expression of DHH and activation of the hedgehog pathway, which is required to maintain glioblastoma stem cell proliferation. Therefore, inhibition of GGCT function may be useful in suppressing stemness of glioblastoma stem cells accompanied by activation of the hedgehog pathway.</p>","PeriodicalId":9516,"journal":{"name":"Cancer Genomics & Proteomics","volume":"21 5","pages":"474-484"},"PeriodicalIF":2.6000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11363923/pdf/","citationCount":"0","resultStr":"{\"title\":\"Desert Hedgehog Down-regulation Mediates Inhibition of Proliferation by γ-Glutamylcyclotransferase Knockdown in Murine Glioblastoma Stem Cells.\",\"authors\":\"Masaya Mori, Hiromi Ii, Mitsugu Fujita, Kozue Nose, Ayako Shimada, Risa Shiraki, Yuhi Sone, Chiami Moyama, Keiko Taniguchi, Susumu Nakata\",\"doi\":\"10.21873/cgp.20465\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background/aim: </strong>Glioblastoma is the most frequent type of adult-onset malignant brain tumor and has a very poor prognosis. Glioblastoma stem cells have been shown to be one of the mechanisms by which glioblastoma acquires therapy resistance. Therefore, there is a need to establish novel therapeutic strategies useful for inhibiting this cell population. γ-Glutamylcyclotransferase (GGCT) is an enzyme involved in the synthesis and metabolism of glutathione, which is highly expressed in a wide range of cancer types, including glioblastoma, and inhibition of its expression has been reported to have antitumor effects on various cancer types. The aim of this study was to clarify the function of GGCT in glioblastoma stem cells.</p><p><strong>Materials and methods: </strong>We searched for pathways affected by GGCT overexpression in mouse embryonic fibroblasts NIH-3T3 by comprehensive gene expression analysis. Knockdown of GGCT and overexpression of desert hedgehog (DHH), a representative ligand of the pathway, were performed in glioblastoma stem cells derived from a mouse glioblastoma model.</p><p><strong>Results: </strong>GGCT overexpression activated the hedgehog pathway. Knockdown of GGCT inhibited proliferation of glioblastoma stem cells and reduced expression of DHH and the downstream target GLI family zinc finger 1 (GLI1). DHH overexpression significantly restored the growth-suppressive effect of GGCT knockdown.</p><p><strong>Conclusion: </strong>High GGCT expression is important for expression of DHH and activation of the hedgehog pathway, which is required to maintain glioblastoma stem cell proliferation. Therefore, inhibition of GGCT function may be useful in suppressing stemness of glioblastoma stem cells accompanied by activation of the hedgehog pathway.</p>\",\"PeriodicalId\":9516,\"journal\":{\"name\":\"Cancer Genomics & Proteomics\",\"volume\":\"21 5\",\"pages\":\"474-484\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11363923/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer Genomics & Proteomics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.21873/cgp.20465\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Genomics & Proteomics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.21873/cgp.20465","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Desert Hedgehog Down-regulation Mediates Inhibition of Proliferation by γ-Glutamylcyclotransferase Knockdown in Murine Glioblastoma Stem Cells.
Background/aim: Glioblastoma is the most frequent type of adult-onset malignant brain tumor and has a very poor prognosis. Glioblastoma stem cells have been shown to be one of the mechanisms by which glioblastoma acquires therapy resistance. Therefore, there is a need to establish novel therapeutic strategies useful for inhibiting this cell population. γ-Glutamylcyclotransferase (GGCT) is an enzyme involved in the synthesis and metabolism of glutathione, which is highly expressed in a wide range of cancer types, including glioblastoma, and inhibition of its expression has been reported to have antitumor effects on various cancer types. The aim of this study was to clarify the function of GGCT in glioblastoma stem cells.
Materials and methods: We searched for pathways affected by GGCT overexpression in mouse embryonic fibroblasts NIH-3T3 by comprehensive gene expression analysis. Knockdown of GGCT and overexpression of desert hedgehog (DHH), a representative ligand of the pathway, were performed in glioblastoma stem cells derived from a mouse glioblastoma model.
Results: GGCT overexpression activated the hedgehog pathway. Knockdown of GGCT inhibited proliferation of glioblastoma stem cells and reduced expression of DHH and the downstream target GLI family zinc finger 1 (GLI1). DHH overexpression significantly restored the growth-suppressive effect of GGCT knockdown.
Conclusion: High GGCT expression is important for expression of DHH and activation of the hedgehog pathway, which is required to maintain glioblastoma stem cell proliferation. Therefore, inhibition of GGCT function may be useful in suppressing stemness of glioblastoma stem cells accompanied by activation of the hedgehog pathway.
期刊介绍:
Cancer Genomics & Proteomics (CGP) is an international peer-reviewed journal designed to publish rapidly high quality articles and reviews on the application of genomic and proteomic technology to basic, experimental and clinical cancer research. In this site you may find information concerning the editorial board, editorial policy, issue contents, subscriptions, submission of manuscripts and advertising. The first issue of CGP circulated in January 2004.
Cancer Genomics & Proteomics is a journal of the International Institute of Anticancer Research. From January 2013 CGP is converted to an online-only open access journal.
Cancer Genomics & Proteomics supports (a) the aims and the research projects of the INTERNATIONAL INSTITUTE OF ANTICANCER RESEARCH and (b) the organization of the INTERNATIONAL CONFERENCES OF ANTICANCER RESEARCH.