Xiaozhu Zeng, Hang Zhang, Jing Guo, Dong Yang, Yongjie Zhu, Nan Liu, Jie Tang, Ting Liu, Xudong Zhao
{"title":"利用配体-靶点 csGRP78 靶向急性髓性白血病的新型双特异性 T 细胞吸引剂。","authors":"Xiaozhu Zeng, Hang Zhang, Jing Guo, Dong Yang, Yongjie Zhu, Nan Liu, Jie Tang, Ting Liu, Xudong Zhao","doi":"10.1007/s00018-024-05410-0","DOIUrl":null,"url":null,"abstract":"<p><p>Current medical therapies for treating acute myeloid leukemia (AML) remain unmet, and AML patients may benefit from targeted immunotherapy approaches that focus on specific tumor antigens. GRP78, which is upregulated in various malignant tumors such as AML, is partially expressed as cell surface GRP78 (csGRP78) on the cell membrane, making it an ideal target for redirecting T cells, including T-cell engagers. However, considering the conventional approach of using two scFv segments to construct a bispecific T-cell engager (BiTE), we have undertaken the development of a novel BiTE that utilizes a cyclic peptide ligand to specifically target csGRP78, which we refer to as GRP78-CD3/BiTE. We studied the effects of GRP78-CD3/BiTE on treatments for AML in vitro and in vivo and assessed the pharmacokinetics of this engager. Our findings demonstrated that GRP78-CD3/BiTE could not only effectively mediate the cytotoxicity of T cells against csGRP78-expressing AML cells but also specifically eliminate primary AML tumor cells in vitro. Furthermore, GRP78-CD3/BiTE exhibited a longer half-life despite having a lower molecular weight than CD19-CD3/BiTE. In a xenograft mouse model of AML, treatment with GRP78-CD3/BiTE prolonged the survival time of the mice. Our findings demonstrate that GRP78-CD3/BiTE is effective and selective for eliminating csGRP78-expressing AML cells and suggest that this approach to targeted immunotherapy could lead to effective new treatments for AML.</p>","PeriodicalId":10007,"journal":{"name":"Cellular and Molecular Life Sciences","volume":"81 1","pages":"371"},"PeriodicalIF":6.2000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11358366/pdf/","citationCount":"0","resultStr":"{\"title\":\"A novel bispecific T-cell engager using the ligand-target csGRP78 against acute myeloid leukemia.\",\"authors\":\"Xiaozhu Zeng, Hang Zhang, Jing Guo, Dong Yang, Yongjie Zhu, Nan Liu, Jie Tang, Ting Liu, Xudong Zhao\",\"doi\":\"10.1007/s00018-024-05410-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Current medical therapies for treating acute myeloid leukemia (AML) remain unmet, and AML patients may benefit from targeted immunotherapy approaches that focus on specific tumor antigens. GRP78, which is upregulated in various malignant tumors such as AML, is partially expressed as cell surface GRP78 (csGRP78) on the cell membrane, making it an ideal target for redirecting T cells, including T-cell engagers. However, considering the conventional approach of using two scFv segments to construct a bispecific T-cell engager (BiTE), we have undertaken the development of a novel BiTE that utilizes a cyclic peptide ligand to specifically target csGRP78, which we refer to as GRP78-CD3/BiTE. We studied the effects of GRP78-CD3/BiTE on treatments for AML in vitro and in vivo and assessed the pharmacokinetics of this engager. Our findings demonstrated that GRP78-CD3/BiTE could not only effectively mediate the cytotoxicity of T cells against csGRP78-expressing AML cells but also specifically eliminate primary AML tumor cells in vitro. Furthermore, GRP78-CD3/BiTE exhibited a longer half-life despite having a lower molecular weight than CD19-CD3/BiTE. In a xenograft mouse model of AML, treatment with GRP78-CD3/BiTE prolonged the survival time of the mice. Our findings demonstrate that GRP78-CD3/BiTE is effective and selective for eliminating csGRP78-expressing AML cells and suggest that this approach to targeted immunotherapy could lead to effective new treatments for AML.</p>\",\"PeriodicalId\":10007,\"journal\":{\"name\":\"Cellular and Molecular Life Sciences\",\"volume\":\"81 1\",\"pages\":\"371\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11358366/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellular and Molecular Life Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00018-024-05410-0\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular and Molecular Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00018-024-05410-0","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
目前治疗急性髓性白血病(AML)的药物疗法仍无法满足患者的需求,而针对特定肿瘤抗原的靶向免疫疗法可能会使AML患者受益。GRP78在各种恶性肿瘤(如急性髓性白血病)中上调,在细胞膜上部分表达为细胞表面GRP78(csGRP78),使其成为重定向T细胞(包括T细胞吞噬者)的理想靶点。然而,考虑到使用两个 scFv 片段构建双特异性 T 细胞吞噬因子(BiTE)的传统方法,我们已着手开发一种利用环肽配体特异性靶向 csGRP78 的新型 BiTE,我们称之为 GRP78-CD3/BiTE。我们研究了 GRP78-CD3/BiTE 在体外和体内治疗急性髓细胞性白血病的效果,并评估了这种啮合剂的药代动力学。我们的研究结果表明,GRP78-CD3/BiTE 不仅能有效介导 T 细胞对表达 csGRP78 的 AML 细胞产生细胞毒性,还能在体外特异性地消除原发性 AML 肿瘤细胞。此外,尽管 GRP78-CD3/BiTE 的分子量低于 CD19-CD3/BiTE,但其半衰期更长。在急性髓细胞性白血病异种移植小鼠模型中,使用 GRP78-CD3/BiTE 治疗可延长小鼠的存活时间。我们的研究结果表明,GRP78-CD3/BiTE 能有效且有选择性地消除表达 csGRP78 的急性髓细胞白血病细胞,并表明这种靶向免疫疗法可为急性髓细胞白血病带来有效的新疗法。
A novel bispecific T-cell engager using the ligand-target csGRP78 against acute myeloid leukemia.
Current medical therapies for treating acute myeloid leukemia (AML) remain unmet, and AML patients may benefit from targeted immunotherapy approaches that focus on specific tumor antigens. GRP78, which is upregulated in various malignant tumors such as AML, is partially expressed as cell surface GRP78 (csGRP78) on the cell membrane, making it an ideal target for redirecting T cells, including T-cell engagers. However, considering the conventional approach of using two scFv segments to construct a bispecific T-cell engager (BiTE), we have undertaken the development of a novel BiTE that utilizes a cyclic peptide ligand to specifically target csGRP78, which we refer to as GRP78-CD3/BiTE. We studied the effects of GRP78-CD3/BiTE on treatments for AML in vitro and in vivo and assessed the pharmacokinetics of this engager. Our findings demonstrated that GRP78-CD3/BiTE could not only effectively mediate the cytotoxicity of T cells against csGRP78-expressing AML cells but also specifically eliminate primary AML tumor cells in vitro. Furthermore, GRP78-CD3/BiTE exhibited a longer half-life despite having a lower molecular weight than CD19-CD3/BiTE. In a xenograft mouse model of AML, treatment with GRP78-CD3/BiTE prolonged the survival time of the mice. Our findings demonstrate that GRP78-CD3/BiTE is effective and selective for eliminating csGRP78-expressing AML cells and suggest that this approach to targeted immunotherapy could lead to effective new treatments for AML.
期刊介绍:
Journal Name: Cellular and Molecular Life Sciences (CMLS)
Location: Basel, Switzerland
Focus:
Multidisciplinary journal
Publishes research articles, reviews, multi-author reviews, and visions & reflections articles
Coverage:
Latest aspects of biological and biomedical research
Areas include:
Biochemistry and molecular biology
Cell biology
Molecular and cellular aspects of biomedicine
Neuroscience
Pharmacology
Immunology
Additional Features:
Welcomes comments on any article published in CMLS
Accepts suggestions for topics to be covered