Hailong Li, Vinicius Vieira Alves, Amol Pednekar, Mary Kate Manhard, Joshua Greer, Andrew T Trout, Lili He, Jonathan R Dillman
{"title":"基于深度学习的新兴 MR 图像重建算法对腹部 MRI 放射特征的影响","authors":"Hailong Li, Vinicius Vieira Alves, Amol Pednekar, Mary Kate Manhard, Joshua Greer, Andrew T Trout, Lili He, Jonathan R Dillman","doi":"10.1097/RCT.0000000000001648","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>This study aims to evaluate, on one MRI vendor's platform, the impact of deep learning (DL)-based reconstruction techniques on MRI radiomic features compared to conventional image reconstruction techniques.</p><p><strong>Methods: </strong>Under IRB approval and informed consent, we prospectively collected undersampled coronal T2-weighted MR images of the abdomen (1.5 T; Philips Healthcare) from 17 pediatric and adult subjects and reconstructed them using a conventional image reconstruction technique (compressed sensitivity encoding [C-SENSE]) and two DL-based reconstruction techniques (SmartSpeed [Philips Healthcare, US FDA cleared] and SmartSpeed with Super Resolution [SmartSpeed-SuperRes, not US FDA cleared to date]). Eight regions of interest (ROIs) across organs/tissues (liver, spleen, kidney, pancreas, fat, and muscle) were manually placed. Eighty-six MRI radiomic features were then extracted. Pearson's correlation coefficients (PCCs) and intraclass correlation coefficients (ICCs) were calculated between (A) C-SENSE versus SmartSpeed, and (B) C-SENSE versus SmartSpeed-SuperRes. To quantify the impact from the perspective of the whole MR image, cross-ROI mean PCCs and ICCs were calculated for individual radiomic features. The impact of image reconstruction on individual radiomic features in different organs/tissues was evaluated using ANOVA analyses.</p><p><strong>Results: </strong>According to cross-ROI mean PCCs, 50 out of 86 radiomic features were highly correlated (PCC, ≥0.8) between SmartSpeed and C-SENSE, whereas only 15 radiomic features were highly correlated between SmartSpeed-SuperRes and C-SENSE reconstructions. According to cross-ROI mean ICCs, 58 out of 86 radiomic features had high agreements (ICC ≥0.75) between SmartSpeed and C-SENSE, whereas only 9 radiomic features had high agreements between SmartSpeed-SuperRes and C-SENSE reconstructions. For SmartSpeed reconstruction, the psoas muscle ROI appeared to be impacted most with the lowest median (IQR) correlation of 0.57 (0.25). The circular liver ROI was impacted most by SmartSpeed-SuperRes (PCC, 0.60 [0.22]). ANOVA analyses suggest that the impact of DL reconstruction algorithms on radiomic features varies significantly among different organs/tissues (P < 0.001).</p><p><strong>Conclusions: </strong>MRI radiomic features are significantly altered by DL-based reconstruction compared to a conventional reconstruction technique. The impact of DL reconstruction algorithms on radiomic features varies significantly between different organs/tissues.</p>","PeriodicalId":15402,"journal":{"name":"Journal of Computer Assisted Tomography","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of Emerging Deep Learning-Based MR Image Reconstruction Algorithms on Abdominal MRI Radiomic Features.\",\"authors\":\"Hailong Li, Vinicius Vieira Alves, Amol Pednekar, Mary Kate Manhard, Joshua Greer, Andrew T Trout, Lili He, Jonathan R Dillman\",\"doi\":\"10.1097/RCT.0000000000001648\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>This study aims to evaluate, on one MRI vendor's platform, the impact of deep learning (DL)-based reconstruction techniques on MRI radiomic features compared to conventional image reconstruction techniques.</p><p><strong>Methods: </strong>Under IRB approval and informed consent, we prospectively collected undersampled coronal T2-weighted MR images of the abdomen (1.5 T; Philips Healthcare) from 17 pediatric and adult subjects and reconstructed them using a conventional image reconstruction technique (compressed sensitivity encoding [C-SENSE]) and two DL-based reconstruction techniques (SmartSpeed [Philips Healthcare, US FDA cleared] and SmartSpeed with Super Resolution [SmartSpeed-SuperRes, not US FDA cleared to date]). Eight regions of interest (ROIs) across organs/tissues (liver, spleen, kidney, pancreas, fat, and muscle) were manually placed. Eighty-six MRI radiomic features were then extracted. Pearson's correlation coefficients (PCCs) and intraclass correlation coefficients (ICCs) were calculated between (A) C-SENSE versus SmartSpeed, and (B) C-SENSE versus SmartSpeed-SuperRes. To quantify the impact from the perspective of the whole MR image, cross-ROI mean PCCs and ICCs were calculated for individual radiomic features. The impact of image reconstruction on individual radiomic features in different organs/tissues was evaluated using ANOVA analyses.</p><p><strong>Results: </strong>According to cross-ROI mean PCCs, 50 out of 86 radiomic features were highly correlated (PCC, ≥0.8) between SmartSpeed and C-SENSE, whereas only 15 radiomic features were highly correlated between SmartSpeed-SuperRes and C-SENSE reconstructions. According to cross-ROI mean ICCs, 58 out of 86 radiomic features had high agreements (ICC ≥0.75) between SmartSpeed and C-SENSE, whereas only 9 radiomic features had high agreements between SmartSpeed-SuperRes and C-SENSE reconstructions. For SmartSpeed reconstruction, the psoas muscle ROI appeared to be impacted most with the lowest median (IQR) correlation of 0.57 (0.25). The circular liver ROI was impacted most by SmartSpeed-SuperRes (PCC, 0.60 [0.22]). ANOVA analyses suggest that the impact of DL reconstruction algorithms on radiomic features varies significantly among different organs/tissues (P < 0.001).</p><p><strong>Conclusions: </strong>MRI radiomic features are significantly altered by DL-based reconstruction compared to a conventional reconstruction technique. The impact of DL reconstruction algorithms on radiomic features varies significantly between different organs/tissues.</p>\",\"PeriodicalId\":15402,\"journal\":{\"name\":\"Journal of Computer Assisted Tomography\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computer Assisted Tomography\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/RCT.0000000000001648\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer Assisted Tomography","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/RCT.0000000000001648","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Impact of Emerging Deep Learning-Based MR Image Reconstruction Algorithms on Abdominal MRI Radiomic Features.
Objective: This study aims to evaluate, on one MRI vendor's platform, the impact of deep learning (DL)-based reconstruction techniques on MRI radiomic features compared to conventional image reconstruction techniques.
Methods: Under IRB approval and informed consent, we prospectively collected undersampled coronal T2-weighted MR images of the abdomen (1.5 T; Philips Healthcare) from 17 pediatric and adult subjects and reconstructed them using a conventional image reconstruction technique (compressed sensitivity encoding [C-SENSE]) and two DL-based reconstruction techniques (SmartSpeed [Philips Healthcare, US FDA cleared] and SmartSpeed with Super Resolution [SmartSpeed-SuperRes, not US FDA cleared to date]). Eight regions of interest (ROIs) across organs/tissues (liver, spleen, kidney, pancreas, fat, and muscle) were manually placed. Eighty-six MRI radiomic features were then extracted. Pearson's correlation coefficients (PCCs) and intraclass correlation coefficients (ICCs) were calculated between (A) C-SENSE versus SmartSpeed, and (B) C-SENSE versus SmartSpeed-SuperRes. To quantify the impact from the perspective of the whole MR image, cross-ROI mean PCCs and ICCs were calculated for individual radiomic features. The impact of image reconstruction on individual radiomic features in different organs/tissues was evaluated using ANOVA analyses.
Results: According to cross-ROI mean PCCs, 50 out of 86 radiomic features were highly correlated (PCC, ≥0.8) between SmartSpeed and C-SENSE, whereas only 15 radiomic features were highly correlated between SmartSpeed-SuperRes and C-SENSE reconstructions. According to cross-ROI mean ICCs, 58 out of 86 radiomic features had high agreements (ICC ≥0.75) between SmartSpeed and C-SENSE, whereas only 9 radiomic features had high agreements between SmartSpeed-SuperRes and C-SENSE reconstructions. For SmartSpeed reconstruction, the psoas muscle ROI appeared to be impacted most with the lowest median (IQR) correlation of 0.57 (0.25). The circular liver ROI was impacted most by SmartSpeed-SuperRes (PCC, 0.60 [0.22]). ANOVA analyses suggest that the impact of DL reconstruction algorithms on radiomic features varies significantly among different organs/tissues (P < 0.001).
Conclusions: MRI radiomic features are significantly altered by DL-based reconstruction compared to a conventional reconstruction technique. The impact of DL reconstruction algorithms on radiomic features varies significantly between different organs/tissues.
期刊介绍:
The mission of Journal of Computer Assisted Tomography is to showcase the latest clinical and research developments in CT, MR, and closely related diagnostic techniques. We encourage submission of both original research and review articles that have immediate or promissory clinical applications. Topics of special interest include: 1) functional MR and CT of the brain and body; 2) advanced/innovative MRI techniques (diffusion, perfusion, rapid scanning); and 3) advanced/innovative CT techniques (perfusion, multi-energy, dose-reduction, and processing).