{"title":"评估牙髓生物陶瓷在人类牙周韧带衍生细胞中的细胞相容性。","authors":"Asuka Aka, Takashi Matsuura, Atsutoshi Yoshimura","doi":"10.3390/jfb15080231","DOIUrl":null,"url":null,"abstract":"<p><p>The present study evaluated the cytocompatibility of three endodontic bioceramics in human periodontal-ligament-derived cells (hPDLCs): MTA Repair HP (HP), MTA Flow White (F), and Nishika Canal Sealer BG multi (BG). In addition, we also evaluated the effect of the powder-liquid (paste) ratio of F and BG on cytocompatibility. Discs of endodontic bioceramics (diameter = 8 mm, thickness = 1 mm) were prepared with HP, F, and BG. hPDLCs obtained from extracted teeth and cultured for three to five passages were used in the experiment. The prepared discs were placed at the bottom of a 48-well plate, seeded with hPDLCs at 100,000 cells/well, cultured for 7 or 28 days, and subjected to a 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide assay. hPDLCs cultured without any discs were used as a negative control (NC) group. Discs made of F or BG mixed in three different consistencies were also used in this experiment. The absorbance values at days 7 and 28 were high in the order of HP > NC > BG > F. Furthermore, F or BG with higher consistency showed higher absorbance values. MTA Repair HP had the highest cytocompatibility among the three materials. Furthermore, it also showed that higher consistency improved cytocompatibility.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"15 8","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11355906/pdf/","citationCount":"0","resultStr":"{\"title\":\"An Evaluation of the Cytocompatibility of Endodontic Bioceramics in Human Periodontal-Ligament-Derived Cells.\",\"authors\":\"Asuka Aka, Takashi Matsuura, Atsutoshi Yoshimura\",\"doi\":\"10.3390/jfb15080231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The present study evaluated the cytocompatibility of three endodontic bioceramics in human periodontal-ligament-derived cells (hPDLCs): MTA Repair HP (HP), MTA Flow White (F), and Nishika Canal Sealer BG multi (BG). In addition, we also evaluated the effect of the powder-liquid (paste) ratio of F and BG on cytocompatibility. Discs of endodontic bioceramics (diameter = 8 mm, thickness = 1 mm) were prepared with HP, F, and BG. hPDLCs obtained from extracted teeth and cultured for three to five passages were used in the experiment. The prepared discs were placed at the bottom of a 48-well plate, seeded with hPDLCs at 100,000 cells/well, cultured for 7 or 28 days, and subjected to a 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide assay. hPDLCs cultured without any discs were used as a negative control (NC) group. Discs made of F or BG mixed in three different consistencies were also used in this experiment. The absorbance values at days 7 and 28 were high in the order of HP > NC > BG > F. Furthermore, F or BG with higher consistency showed higher absorbance values. MTA Repair HP had the highest cytocompatibility among the three materials. Furthermore, it also showed that higher consistency improved cytocompatibility.</p>\",\"PeriodicalId\":15767,\"journal\":{\"name\":\"Journal of Functional Biomaterials\",\"volume\":\"15 8\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11355906/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Biomaterials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/jfb15080231\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/jfb15080231","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
摘要
本研究评估了三种牙髓生物陶瓷在人牙周韧带衍生细胞(hPDLCs)中的细胞相容性:MTA Repair HP (HP)、MTA Flow White (F) 和 Nishika Canal Sealer BG multi (BG)。此外,我们还评估了 F 和 BG 的粉液(糊状)比例对细胞相容性的影响。使用 HP、F 和 BG 制备牙髓生物陶瓷圆片(直径 = 8 毫米,厚度 = 1 毫米)。将制备好的圆片置于 48 孔板的底部,以每孔 100,000 个细胞的数量接种 hPDLCs,培养 7 天或 28 天,然后进行 3-[4,5-二甲基噻唑-2-基]-2,5-二苯基四唑溴化物检测。本实验还使用了由 F 或 BG 混合制成的三种不同浓度的圆片。第 7 天和第 28 天的吸光度值依次为 HP > NC > BG > F。在三种材料中,MTA 修复 HP 的细胞相容性最高。此外,研究还表明,稠度越高,细胞相容性越好。
An Evaluation of the Cytocompatibility of Endodontic Bioceramics in Human Periodontal-Ligament-Derived Cells.
The present study evaluated the cytocompatibility of three endodontic bioceramics in human periodontal-ligament-derived cells (hPDLCs): MTA Repair HP (HP), MTA Flow White (F), and Nishika Canal Sealer BG multi (BG). In addition, we also evaluated the effect of the powder-liquid (paste) ratio of F and BG on cytocompatibility. Discs of endodontic bioceramics (diameter = 8 mm, thickness = 1 mm) were prepared with HP, F, and BG. hPDLCs obtained from extracted teeth and cultured for three to five passages were used in the experiment. The prepared discs were placed at the bottom of a 48-well plate, seeded with hPDLCs at 100,000 cells/well, cultured for 7 or 28 days, and subjected to a 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide assay. hPDLCs cultured without any discs were used as a negative control (NC) group. Discs made of F or BG mixed in three different consistencies were also used in this experiment. The absorbance values at days 7 and 28 were high in the order of HP > NC > BG > F. Furthermore, F or BG with higher consistency showed higher absorbance values. MTA Repair HP had the highest cytocompatibility among the three materials. Furthermore, it also showed that higher consistency improved cytocompatibility.
期刊介绍:
Journal of Functional Biomaterials (JFB, ISSN 2079-4983) is an international and interdisciplinary scientific journal that publishes regular research papers (articles), reviews and short communications about applications of materials for biomedical use. JFB covers subjects from chemistry, pharmacy, biology, physics over to engineering. The journal focuses on the preparation, performance and use of functional biomaterials in biomedical devices and their behaviour in physiological environments. Our aim is to encourage scientists to publish their results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Several topical special issues will be published. Scope: adhesion, adsorption, biocompatibility, biohybrid materials, bio-inert materials, biomaterials, biomedical devices, biomimetic materials, bone repair, cardiovascular devices, ceramics, composite materials, dental implants, dental materials, drug delivery systems, functional biopolymers, glasses, hyper branched polymers, molecularly imprinted polymers (MIPs), nanomedicine, nanoparticles, nanotechnology, natural materials, self-assembly smart materials, stimuli responsive materials, surface modification, tissue devices, tissue engineering, tissue-derived materials, urological devices.