Camila Figueiredo Pinzan, Clara Valero, Patrícia Alves de Castro, Jefferson Luiz da Silva, Kayleigh Earle, Hong Liu, Maria Augusta Crivelente Horta, Olaf Kniemeyer, Thomas Krüger, Annica Pschibul, Derya Nur Cömert, Thorsten Heinekamp, Axel A. Brakhage, Jacob L. Steenwyk, Matthew E. Mead, Nico Hermsdorf, Scott G. Filler, Nathalia Gonsales da Rosa-Garzon, Endrews Delbaje, Michael J. Bromley, Hamilton Cabral, Camila Diehl, Claudia B. Angeli, Giuseppe Palmisano, Ashraf S. Ibrahim, David C. Rinker, Thomas J. C. Sauters, Karin Steffen, Adiyantara Gumilang, Antonis Rokas, Sara Gago, Thaila F. dos Reis, Gustavo H. Goldman
{"title":"曲霉分生孢子表面相关蛋白质组揭示了真菌逃避和宿主免疫调节的因素。","authors":"Camila Figueiredo Pinzan, Clara Valero, Patrícia Alves de Castro, Jefferson Luiz da Silva, Kayleigh Earle, Hong Liu, Maria Augusta Crivelente Horta, Olaf Kniemeyer, Thomas Krüger, Annica Pschibul, Derya Nur Cömert, Thorsten Heinekamp, Axel A. Brakhage, Jacob L. Steenwyk, Matthew E. Mead, Nico Hermsdorf, Scott G. Filler, Nathalia Gonsales da Rosa-Garzon, Endrews Delbaje, Michael J. Bromley, Hamilton Cabral, Camila Diehl, Claudia B. Angeli, Giuseppe Palmisano, Ashraf S. Ibrahim, David C. Rinker, Thomas J. C. Sauters, Karin Steffen, Adiyantara Gumilang, Antonis Rokas, Sara Gago, Thaila F. dos Reis, Gustavo H. Goldman","doi":"10.1038/s41564-024-01782-y","DOIUrl":null,"url":null,"abstract":"Aspergillus fumigatus causes aspergillosis and relies on asexual spores (conidia) for initiating host infection. There is scarce information about A. fumigatus proteins involved in fungal evasion and host immunity modulation. Here we analysed the conidial surface proteome of A. fumigatus, two closely related non-pathogenic species, Aspergillus fischeri and Aspergillus oerlinghausenensis, as well as pathogenic Aspergillus lentulus, to identify such proteins. After identifying 62 proteins exclusively detected on the A. fumigatus conidial surface, we assessed null mutants for 42 genes encoding these proteins. Deletion of 33 of these genes altered susceptibility to macrophage, epithelial cells and cytokine production. Notably, a gene that encodes a putative glycosylasparaginase, modulating levels of the host proinflammatory cytokine IL-1β, is important for infection in an immunocompetent murine model of fungal disease. These results suggest that A. fumigatus conidial surface proteins are important for evasion and modulation of the immune response at the onset of fungal infection. Analysis of the conidial surface proteome of the fungal pathogen Aspergillus fumigatus and three closely related species reveals factors important for evasion and modulation of host immunity","PeriodicalId":18992,"journal":{"name":"Nature Microbiology","volume":"9 10","pages":"2710-2726"},"PeriodicalIF":20.5000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aspergillus fumigatus conidial surface-associated proteome reveals factors for fungal evasion and host immunity modulation\",\"authors\":\"Camila Figueiredo Pinzan, Clara Valero, Patrícia Alves de Castro, Jefferson Luiz da Silva, Kayleigh Earle, Hong Liu, Maria Augusta Crivelente Horta, Olaf Kniemeyer, Thomas Krüger, Annica Pschibul, Derya Nur Cömert, Thorsten Heinekamp, Axel A. Brakhage, Jacob L. Steenwyk, Matthew E. Mead, Nico Hermsdorf, Scott G. Filler, Nathalia Gonsales da Rosa-Garzon, Endrews Delbaje, Michael J. Bromley, Hamilton Cabral, Camila Diehl, Claudia B. Angeli, Giuseppe Palmisano, Ashraf S. Ibrahim, David C. Rinker, Thomas J. C. Sauters, Karin Steffen, Adiyantara Gumilang, Antonis Rokas, Sara Gago, Thaila F. dos Reis, Gustavo H. Goldman\",\"doi\":\"10.1038/s41564-024-01782-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aspergillus fumigatus causes aspergillosis and relies on asexual spores (conidia) for initiating host infection. There is scarce information about A. fumigatus proteins involved in fungal evasion and host immunity modulation. Here we analysed the conidial surface proteome of A. fumigatus, two closely related non-pathogenic species, Aspergillus fischeri and Aspergillus oerlinghausenensis, as well as pathogenic Aspergillus lentulus, to identify such proteins. After identifying 62 proteins exclusively detected on the A. fumigatus conidial surface, we assessed null mutants for 42 genes encoding these proteins. Deletion of 33 of these genes altered susceptibility to macrophage, epithelial cells and cytokine production. Notably, a gene that encodes a putative glycosylasparaginase, modulating levels of the host proinflammatory cytokine IL-1β, is important for infection in an immunocompetent murine model of fungal disease. These results suggest that A. fumigatus conidial surface proteins are important for evasion and modulation of the immune response at the onset of fungal infection. Analysis of the conidial surface proteome of the fungal pathogen Aspergillus fumigatus and three closely related species reveals factors important for evasion and modulation of host immunity\",\"PeriodicalId\":18992,\"journal\":{\"name\":\"Nature Microbiology\",\"volume\":\"9 10\",\"pages\":\"2710-2726\"},\"PeriodicalIF\":20.5000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.nature.com/articles/s41564-024-01782-y\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Microbiology","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41564-024-01782-y","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Aspergillus fumigatus conidial surface-associated proteome reveals factors for fungal evasion and host immunity modulation
Aspergillus fumigatus causes aspergillosis and relies on asexual spores (conidia) for initiating host infection. There is scarce information about A. fumigatus proteins involved in fungal evasion and host immunity modulation. Here we analysed the conidial surface proteome of A. fumigatus, two closely related non-pathogenic species, Aspergillus fischeri and Aspergillus oerlinghausenensis, as well as pathogenic Aspergillus lentulus, to identify such proteins. After identifying 62 proteins exclusively detected on the A. fumigatus conidial surface, we assessed null mutants for 42 genes encoding these proteins. Deletion of 33 of these genes altered susceptibility to macrophage, epithelial cells and cytokine production. Notably, a gene that encodes a putative glycosylasparaginase, modulating levels of the host proinflammatory cytokine IL-1β, is important for infection in an immunocompetent murine model of fungal disease. These results suggest that A. fumigatus conidial surface proteins are important for evasion and modulation of the immune response at the onset of fungal infection. Analysis of the conidial surface proteome of the fungal pathogen Aspergillus fumigatus and three closely related species reveals factors important for evasion and modulation of host immunity
期刊介绍:
Nature Microbiology aims to cover a comprehensive range of topics related to microorganisms. This includes:
Evolution: The journal is interested in exploring the evolutionary aspects of microorganisms. This may include research on their genetic diversity, adaptation, and speciation over time.
Physiology and cell biology: Nature Microbiology seeks to understand the functions and characteristics of microorganisms at the cellular and physiological levels. This may involve studying their metabolism, growth patterns, and cellular processes.
Interactions: The journal focuses on the interactions microorganisms have with each other, as well as their interactions with hosts or the environment. This encompasses investigations into microbial communities, symbiotic relationships, and microbial responses to different environments.
Societal significance: Nature Microbiology recognizes the societal impact of microorganisms and welcomes studies that explore their practical applications. This may include research on microbial diseases, biotechnology, or environmental remediation.
In summary, Nature Microbiology is interested in research related to the evolution, physiology and cell biology of microorganisms, their interactions, and their societal relevance.