RailTrack-DaViT:基于视觉转换器的铁路轨道缺陷自动检测方法。

IF 2.7 Q3 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY Journal of Imaging Pub Date : 2024-08-07 DOI:10.3390/jimaging10080192
Aniwat Phaphuangwittayakul, Napat Harnpornchai, Fangli Ying, Jinming Zhang
{"title":"RailTrack-DaViT:基于视觉转换器的铁路轨道缺陷自动检测方法。","authors":"Aniwat Phaphuangwittayakul, Napat Harnpornchai, Fangli Ying, Jinming Zhang","doi":"10.3390/jimaging10080192","DOIUrl":null,"url":null,"abstract":"<p><p>Railway track defects pose significant safety risks and can lead to accidents, economic losses, and loss of life. Traditional manual inspection methods are either time-consuming, costly, or prone to human error. This paper proposes RailTrack-DaViT, a novel vision transformer-based approach for railway track defect classification. By leveraging the Dual Attention Vision Transformer (DaViT) architecture, RailTrack-DaViT effectively captures both global and local information, enabling accurate defect detection. The model is trained and evaluated on multiple datasets including rail, fastener and fishplate, multi-faults, and ThaiRailTrack. A comprehensive analysis of the model's performance is provided including confusion matrices, training visualizations, and classification metrics. RailTrack-DaViT demonstrates superior performance compared to state-of-the-art CNN-based methods, achieving the highest accuracies: 96.9% on the rail dataset, 98.9% on the fastener and fishplate dataset, and 98.8% on the multi-faults dataset. Moreover, RailTrack-DaViT outperforms baselines on the ThaiRailTrack dataset with 99.2% accuracy, quickly adapts to unseen images, and shows better model stability during fine-tuning. This capability can significantly reduce time consumption when applying the model to novel datasets in practical applications.</p>","PeriodicalId":37035,"journal":{"name":"Journal of Imaging","volume":"10 8","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11355430/pdf/","citationCount":"0","resultStr":"{\"title\":\"RailTrack-DaViT: A Vision Transformer-Based Approach for Automated Railway Track Defect Detection.\",\"authors\":\"Aniwat Phaphuangwittayakul, Napat Harnpornchai, Fangli Ying, Jinming Zhang\",\"doi\":\"10.3390/jimaging10080192\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Railway track defects pose significant safety risks and can lead to accidents, economic losses, and loss of life. Traditional manual inspection methods are either time-consuming, costly, or prone to human error. This paper proposes RailTrack-DaViT, a novel vision transformer-based approach for railway track defect classification. By leveraging the Dual Attention Vision Transformer (DaViT) architecture, RailTrack-DaViT effectively captures both global and local information, enabling accurate defect detection. The model is trained and evaluated on multiple datasets including rail, fastener and fishplate, multi-faults, and ThaiRailTrack. A comprehensive analysis of the model's performance is provided including confusion matrices, training visualizations, and classification metrics. RailTrack-DaViT demonstrates superior performance compared to state-of-the-art CNN-based methods, achieving the highest accuracies: 96.9% on the rail dataset, 98.9% on the fastener and fishplate dataset, and 98.8% on the multi-faults dataset. Moreover, RailTrack-DaViT outperforms baselines on the ThaiRailTrack dataset with 99.2% accuracy, quickly adapts to unseen images, and shows better model stability during fine-tuning. This capability can significantly reduce time consumption when applying the model to novel datasets in practical applications.</p>\",\"PeriodicalId\":37035,\"journal\":{\"name\":\"Journal of Imaging\",\"volume\":\"10 8\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11355430/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jimaging10080192\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jimaging10080192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

铁路轨道缺陷构成重大安全风险,可能导致事故、经济损失和人员伤亡。传统的人工检测方法要么耗时长、成本高,要么容易出现人为错误。本文提出了一种基于视觉转换器的铁路轨道缺陷分类新方法--RailTrack-DaViT。通过利用双注意力视觉转换器(DaViT)架构,RailTrack-DaViT 可有效捕捉全局和局部信息,从而实现准确的缺陷检测。该模型在多个数据集上进行了训练和评估,包括钢轨、扣件和鱼板、多重故障和 ThaiRailTrack。提供了对模型性能的全面分析,包括混淆矩阵、训练可视化和分类指标。与最先进的基于 CNN 的方法相比,RailTrack-DaViT 表现出了卓越的性能,达到了最高的准确率:在铁路数据集上达到 96.9%,在扣件和鱼板数据集上达到 98.9%,在多重故障数据集上达到 98.8%。此外,RailTrack-DaViT 在 ThaiRailTrack 数据集上的准确率为 99.2%,优于基线方法,能快速适应未见图像,并在微调过程中显示出更好的模型稳定性。在实际应用中,将模型应用于新数据集时,这种能力可以大大减少时间消耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
RailTrack-DaViT: A Vision Transformer-Based Approach for Automated Railway Track Defect Detection.

Railway track defects pose significant safety risks and can lead to accidents, economic losses, and loss of life. Traditional manual inspection methods are either time-consuming, costly, or prone to human error. This paper proposes RailTrack-DaViT, a novel vision transformer-based approach for railway track defect classification. By leveraging the Dual Attention Vision Transformer (DaViT) architecture, RailTrack-DaViT effectively captures both global and local information, enabling accurate defect detection. The model is trained and evaluated on multiple datasets including rail, fastener and fishplate, multi-faults, and ThaiRailTrack. A comprehensive analysis of the model's performance is provided including confusion matrices, training visualizations, and classification metrics. RailTrack-DaViT demonstrates superior performance compared to state-of-the-art CNN-based methods, achieving the highest accuracies: 96.9% on the rail dataset, 98.9% on the fastener and fishplate dataset, and 98.8% on the multi-faults dataset. Moreover, RailTrack-DaViT outperforms baselines on the ThaiRailTrack dataset with 99.2% accuracy, quickly adapts to unseen images, and shows better model stability during fine-tuning. This capability can significantly reduce time consumption when applying the model to novel datasets in practical applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Imaging
Journal of Imaging Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
5.90
自引率
6.20%
发文量
303
审稿时长
7 weeks
期刊最新文献
AQSA-Algorithm for Automatic Quantification of Spheres Derived from Cancer Cells in Microfluidic Devices. Editorial on the Special Issue "Fluorescence Imaging and Analysis of Cellular Systems". Spatially Localized Visual Perception Estimation by Means of Prosthetic Vision Simulation. MOTH: Memory-Efficient On-the-Fly Tiling of Histological Image Annotations Using QuPath. Anatomical Characteristics of Cervicomedullary Compression on MRI Scans in Children with Achondroplasia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1