用于诊断脊柱侧弯的 3D 模式综述。

IF 2.2 4区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Tomography Pub Date : 2024-08-02 DOI:10.3390/tomography10080090
Sampath Kumar, Bhaskar Awadhiya, Rahul Ratnakumar, Ananthakrishna Thalengala, Anu Shaju Areeckal, Yashwanth Nanjappa
{"title":"用于诊断脊柱侧弯的 3D 模式综述。","authors":"Sampath Kumar, Bhaskar Awadhiya, Rahul Ratnakumar, Ananthakrishna Thalengala, Anu Shaju Areeckal, Yashwanth Nanjappa","doi":"10.3390/tomography10080090","DOIUrl":null,"url":null,"abstract":"<p><p>Spine radiographs in the standing position are the recommended standard for diagnosing idiopathic scoliosis. Though the deformity exists in 3D, its diagnosis is currently carried out with the help of 2D radiographs due to the unavailability of an efficient, low-cost 3D alternative. Computed tomography (CT) and magnetic resonance imaging (MRI) are not suitable in this case, as they are obtained in the supine position. Research on 3D modelling of scoliotic spine began with multiplanar radiographs and later moved on to biplanar radiographs and finally a single radiograph. Nonetheless, modern advances in diagnostic imaging have the potential to preserve image quality and decrease radiation exposure. They include the DIERS formetric scanner system, the EOS imaging system, and ultrasonography. This review article briefly explains the technology behind each of these methods. They are compared with the standard imaging techniques. The DIERS system and ultrasonography are radiation free but have limitations with respect to the quality of the 3D model obtained. There is a need for 3D imaging technology with less or zero radiation exposure and that can produce a quality 3D model for diseases like adolescent idiopathic scoliosis. Accurate 3D models are crucial in clinical practice for diagnosis, planning surgery, patient follow-up examinations, biomechanical applications, and computer-assisted surgery.</p>","PeriodicalId":51330,"journal":{"name":"Tomography","volume":"10 8","pages":"1192-1204"},"PeriodicalIF":2.2000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11360202/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Review of 3D Modalities Used for the Diagnosis of Scoliosis.\",\"authors\":\"Sampath Kumar, Bhaskar Awadhiya, Rahul Ratnakumar, Ananthakrishna Thalengala, Anu Shaju Areeckal, Yashwanth Nanjappa\",\"doi\":\"10.3390/tomography10080090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Spine radiographs in the standing position are the recommended standard for diagnosing idiopathic scoliosis. Though the deformity exists in 3D, its diagnosis is currently carried out with the help of 2D radiographs due to the unavailability of an efficient, low-cost 3D alternative. Computed tomography (CT) and magnetic resonance imaging (MRI) are not suitable in this case, as they are obtained in the supine position. Research on 3D modelling of scoliotic spine began with multiplanar radiographs and later moved on to biplanar radiographs and finally a single radiograph. Nonetheless, modern advances in diagnostic imaging have the potential to preserve image quality and decrease radiation exposure. They include the DIERS formetric scanner system, the EOS imaging system, and ultrasonography. This review article briefly explains the technology behind each of these methods. They are compared with the standard imaging techniques. The DIERS system and ultrasonography are radiation free but have limitations with respect to the quality of the 3D model obtained. There is a need for 3D imaging technology with less or zero radiation exposure and that can produce a quality 3D model for diseases like adolescent idiopathic scoliosis. Accurate 3D models are crucial in clinical practice for diagnosis, planning surgery, patient follow-up examinations, biomechanical applications, and computer-assisted surgery.</p>\",\"PeriodicalId\":51330,\"journal\":{\"name\":\"Tomography\",\"volume\":\"10 8\",\"pages\":\"1192-1204\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11360202/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tomography\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/tomography10080090\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tomography","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/tomography10080090","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

立位脊柱X光片是诊断特发性脊柱侧弯的推荐标准。虽然脊柱畸形存在于三维空间中,但由于缺乏高效、低成本的三维替代方法,目前只能借助二维X光片进行诊断。计算机断层扫描(CT)和核磁共振成像(MRI)在这种情况下并不适用,因为它们都是在仰卧姿势下获得的。脊柱侧弯的三维建模研究始于多平面射线照片,后来发展到双平面射线照片,最后发展到单张射线照片。然而,现代诊断成像技术的进步有可能保持图像质量并减少辐射暴露。这些技术包括 DIERS 成形扫描系统、EOS 成像系统和超声波成像技术。这篇综述文章简要介绍了这些方法背后的技术。并将它们与标准成像技术进行比较。DIERS 系统和超声波成像技术无辐射,但在获得三维模型的质量方面有局限性。我们需要辐射较少或为零的三维成像技术,并能为青少年特发性脊柱侧凸等疾病生成高质量的三维模型。在临床实践中,精确的三维模型对诊断、手术规划、患者随访检查、生物力学应用和计算机辅助手术至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Review of 3D Modalities Used for the Diagnosis of Scoliosis.

Spine radiographs in the standing position are the recommended standard for diagnosing idiopathic scoliosis. Though the deformity exists in 3D, its diagnosis is currently carried out with the help of 2D radiographs due to the unavailability of an efficient, low-cost 3D alternative. Computed tomography (CT) and magnetic resonance imaging (MRI) are not suitable in this case, as they are obtained in the supine position. Research on 3D modelling of scoliotic spine began with multiplanar radiographs and later moved on to biplanar radiographs and finally a single radiograph. Nonetheless, modern advances in diagnostic imaging have the potential to preserve image quality and decrease radiation exposure. They include the DIERS formetric scanner system, the EOS imaging system, and ultrasonography. This review article briefly explains the technology behind each of these methods. They are compared with the standard imaging techniques. The DIERS system and ultrasonography are radiation free but have limitations with respect to the quality of the 3D model obtained. There is a need for 3D imaging technology with less or zero radiation exposure and that can produce a quality 3D model for diseases like adolescent idiopathic scoliosis. Accurate 3D models are crucial in clinical practice for diagnosis, planning surgery, patient follow-up examinations, biomechanical applications, and computer-assisted surgery.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tomography
Tomography Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
2.70
自引率
10.50%
发文量
222
期刊介绍: TomographyTM publishes basic (technical and pre-clinical) and clinical scientific articles which involve the advancement of imaging technologies. Tomography encompasses studies that use single or multiple imaging modalities including for example CT, US, PET, SPECT, MR and hyperpolarization technologies, as well as optical modalities (i.e. bioluminescence, photoacoustic, endomicroscopy, fiber optic imaging and optical computed tomography) in basic sciences, engineering, preclinical and clinical medicine. Tomography also welcomes studies involving exploration and refinement of contrast mechanisms and image-derived metrics within and across modalities toward the development of novel imaging probes for image-based feedback and intervention. The use of imaging in biology and medicine provides unparalleled opportunities to noninvasively interrogate tissues to obtain real-time dynamic and quantitative information required for diagnosis and response to interventions and to follow evolving pathological conditions. As multi-modal studies and the complexities of imaging technologies themselves are ever increasing to provide advanced information to scientists and clinicians. Tomography provides a unique publication venue allowing investigators the opportunity to more precisely communicate integrated findings related to the diverse and heterogeneous features associated with underlying anatomical, physiological, functional, metabolic and molecular genetic activities of normal and diseased tissue. Thus Tomography publishes peer-reviewed articles which involve the broad use of imaging of any tissue and disease type including both preclinical and clinical investigations. In addition, hardware/software along with chemical and molecular probe advances are welcome as they are deemed to significantly contribute towards the long-term goal of improving the overall impact of imaging on scientific and clinical discovery.
期刊最新文献
Enhanced Detection of Residual Breast Cancer Post-Excisional Biopsy: Comparative Analysis of Contrast-Enhanced MRI with and Without Diffusion-Weighted Imaging. Comparative Sensitivity of MRI Indices for Myelin Assessment in Spinal Cord Regions. CT Angiography Assessment of Dorsal Pancreatic Artery and Intrapancreatic Arcade Anatomy: Impact on Whipple Surgery Outcomes. Fast Hadamard-Encoded 7T Spectroscopic Imaging of Human Brain. Unraveling the Invisible: Topological Data Analysis as the New Frontier in Radiology's Diagnostic Arsenal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1