{"title":"艺术启发超材料的计算设计。","authors":"Gary P. T. Choi","doi":"10.1038/s43588-024-00671-y","DOIUrl":null,"url":null,"abstract":"In recent years, there has been a surge of interest in the design of mechanical metamaterials for different science and engineering applications. In particular, various computational approaches have been developed to facilitate the systematic design of art-inspired metamaterials including origami and kirigami metamaterials. In this Comment, we highlight the recent advances and discuss the outlook for the computational design of art-inspired metamaterials.","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":"4 8","pages":"549-552"},"PeriodicalIF":12.0000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational design of art-inspired metamaterials\",\"authors\":\"Gary P. T. Choi\",\"doi\":\"10.1038/s43588-024-00671-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, there has been a surge of interest in the design of mechanical metamaterials for different science and engineering applications. In particular, various computational approaches have been developed to facilitate the systematic design of art-inspired metamaterials including origami and kirigami metamaterials. In this Comment, we highlight the recent advances and discuss the outlook for the computational design of art-inspired metamaterials.\",\"PeriodicalId\":74246,\"journal\":{\"name\":\"Nature computational science\",\"volume\":\"4 8\",\"pages\":\"549-552\"},\"PeriodicalIF\":12.0000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature computational science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s43588-024-00671-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature computational science","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43588-024-00671-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Computational design of art-inspired metamaterials
In recent years, there has been a surge of interest in the design of mechanical metamaterials for different science and engineering applications. In particular, various computational approaches have been developed to facilitate the systematic design of art-inspired metamaterials including origami and kirigami metamaterials. In this Comment, we highlight the recent advances and discuss the outlook for the computational design of art-inspired metamaterials.