Silvia Bonfanti, Stefan Hiemer, Raja Zulkarnain, Roberto Guerra, Michael Zaiser, Stefano Zapperi
{"title":"机械超材料的计算设计。","authors":"Silvia Bonfanti, Stefan Hiemer, Raja Zulkarnain, Roberto Guerra, Michael Zaiser, Stefano Zapperi","doi":"10.1038/s43588-024-00672-x","DOIUrl":null,"url":null,"abstract":"In the past few years, design of mechanical metamaterials has been empowered by computational tools that have allowed the community to overcome limitations of human intuition. By leveraging efficient optimization algorithms and computational physics models, it is now possible to explore vast design spaces, achieving new material functionalities with unprecedented performance. Here, we present our viewpoint on the state of the art of computational metamaterials design, discussing recent advances in topology optimization and machine learning design with respect to challenges in additive manufacturing. Computational tools have recently empowered mechanical metamaterials design. In this Perspective, advances to these approaches are discussed, notably mechanism-based design, topology optimization, the use of machine learning and the challenges for additive-manufactured metamaterial structures.","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":"4 8","pages":"574-583"},"PeriodicalIF":12.0000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational design of mechanical metamaterials\",\"authors\":\"Silvia Bonfanti, Stefan Hiemer, Raja Zulkarnain, Roberto Guerra, Michael Zaiser, Stefano Zapperi\",\"doi\":\"10.1038/s43588-024-00672-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the past few years, design of mechanical metamaterials has been empowered by computational tools that have allowed the community to overcome limitations of human intuition. By leveraging efficient optimization algorithms and computational physics models, it is now possible to explore vast design spaces, achieving new material functionalities with unprecedented performance. Here, we present our viewpoint on the state of the art of computational metamaterials design, discussing recent advances in topology optimization and machine learning design with respect to challenges in additive manufacturing. Computational tools have recently empowered mechanical metamaterials design. In this Perspective, advances to these approaches are discussed, notably mechanism-based design, topology optimization, the use of machine learning and the challenges for additive-manufactured metamaterial structures.\",\"PeriodicalId\":74246,\"journal\":{\"name\":\"Nature computational science\",\"volume\":\"4 8\",\"pages\":\"574-583\"},\"PeriodicalIF\":12.0000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature computational science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s43588-024-00672-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature computational science","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43588-024-00672-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
In the past few years, design of mechanical metamaterials has been empowered by computational tools that have allowed the community to overcome limitations of human intuition. By leveraging efficient optimization algorithms and computational physics models, it is now possible to explore vast design spaces, achieving new material functionalities with unprecedented performance. Here, we present our viewpoint on the state of the art of computational metamaterials design, discussing recent advances in topology optimization and machine learning design with respect to challenges in additive manufacturing. Computational tools have recently empowered mechanical metamaterials design. In this Perspective, advances to these approaches are discussed, notably mechanism-based design, topology optimization, the use of machine learning and the challenges for additive-manufactured metamaterial structures.