探索隐藏信号:微调 ResNet-50 以探测暗物质

IF 7.2 2区 物理与天体物理 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computer Physics Communications Pub Date : 2024-08-20 DOI:10.1016/j.cpc.2024.109348
Ali Celik
{"title":"探索隐藏信号:微调 ResNet-50 以探测暗物质","authors":"Ali Celik","doi":"10.1016/j.cpc.2024.109348","DOIUrl":null,"url":null,"abstract":"<div><p>In pursuit of detecting dark matter signals, the Large Hadron Collider (LHC) at CERN has conducted proton-proton collisions to probe for these elusive particles, whose existence has been supported by astronomical observations. Despite extensive efforts by the CMS and ATLAS experiments, the direct detection of dark matter signals remains elusive. The current approaches employed for analyzing dark matter signatures utilize the cut-and-count method based on conventional techniques. This study introduces an alternative method for exploring dark matter signatures by utilizing fine-tuning of pre-trained models, such as ResNet-50, on 2D histograms generated from a combination of signal + background samples and background-only samples. By utilizing various signal-to-background ratios as benchmarks, an accuracy of about 90% for a signal-to-background ratio of 0.008 is achieved. This approach not only offers a more refined search for dark matter signals but also presents an efficient and effective means of analysis using machine learning techniques.</p></div>","PeriodicalId":285,"journal":{"name":"Computer Physics Communications","volume":"305 ","pages":"Article 109348"},"PeriodicalIF":7.2000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring hidden signal: Fine-tuning ResNet-50 for dark matter detection\",\"authors\":\"Ali Celik\",\"doi\":\"10.1016/j.cpc.2024.109348\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In pursuit of detecting dark matter signals, the Large Hadron Collider (LHC) at CERN has conducted proton-proton collisions to probe for these elusive particles, whose existence has been supported by astronomical observations. Despite extensive efforts by the CMS and ATLAS experiments, the direct detection of dark matter signals remains elusive. The current approaches employed for analyzing dark matter signatures utilize the cut-and-count method based on conventional techniques. This study introduces an alternative method for exploring dark matter signatures by utilizing fine-tuning of pre-trained models, such as ResNet-50, on 2D histograms generated from a combination of signal + background samples and background-only samples. By utilizing various signal-to-background ratios as benchmarks, an accuracy of about 90% for a signal-to-background ratio of 0.008 is achieved. This approach not only offers a more refined search for dark matter signals but also presents an efficient and effective means of analysis using machine learning techniques.</p></div>\",\"PeriodicalId\":285,\"journal\":{\"name\":\"Computer Physics Communications\",\"volume\":\"305 \",\"pages\":\"Article 109348\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Physics Communications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010465524002716\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Physics Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010465524002716","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

为了探测暗物质信号,欧洲核子研究中心(CERN)的大型强子对撞机(LHC)进行了质子-质子对撞,以探测这些难以捉摸的粒子。尽管 CMS 和 ATLAS 实验做出了大量努力,但暗物质信号的直接探测仍然遥不可及。目前分析暗物质信号所采用的方法是基于传统技术的切割和计数法。本研究介绍了一种探索暗物质特征的替代方法,即利用预训练模型(如 ResNet-50)对信号+背景样本和纯背景样本组合生成的二维直方图进行微调。利用不同的信噪比作为基准,信噪比为 0.008 时的准确率约为 90%。这种方法不仅能更精细地搜索暗物质信号,还能利用机器学习技术提供高效和有效的分析手段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exploring hidden signal: Fine-tuning ResNet-50 for dark matter detection

In pursuit of detecting dark matter signals, the Large Hadron Collider (LHC) at CERN has conducted proton-proton collisions to probe for these elusive particles, whose existence has been supported by astronomical observations. Despite extensive efforts by the CMS and ATLAS experiments, the direct detection of dark matter signals remains elusive. The current approaches employed for analyzing dark matter signatures utilize the cut-and-count method based on conventional techniques. This study introduces an alternative method for exploring dark matter signatures by utilizing fine-tuning of pre-trained models, such as ResNet-50, on 2D histograms generated from a combination of signal + background samples and background-only samples. By utilizing various signal-to-background ratios as benchmarks, an accuracy of about 90% for a signal-to-background ratio of 0.008 is achieved. This approach not only offers a more refined search for dark matter signals but also presents an efficient and effective means of analysis using machine learning techniques.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computer Physics Communications
Computer Physics Communications 物理-计算机:跨学科应用
CiteScore
12.10
自引率
3.20%
发文量
287
审稿时长
5.3 months
期刊介绍: The focus of CPC is on contemporary computational methods and techniques and their implementation, the effectiveness of which will normally be evidenced by the author(s) within the context of a substantive problem in physics. Within this setting CPC publishes two types of paper. Computer Programs in Physics (CPiP) These papers describe significant computer programs to be archived in the CPC Program Library which is held in the Mendeley Data repository. The submitted software must be covered by an approved open source licence. Papers and associated computer programs that address a problem of contemporary interest in physics that cannot be solved by current software are particularly encouraged. Computational Physics Papers (CP) These are research papers in, but are not limited to, the following themes across computational physics and related disciplines. mathematical and numerical methods and algorithms; computational models including those associated with the design, control and analysis of experiments; and algebraic computation. Each will normally include software implementation and performance details. The software implementation should, ideally, be available via GitHub, Zenodo or an institutional repository.In addition, research papers on the impact of advanced computer architecture and special purpose computers on computing in the physical sciences and software topics related to, and of importance in, the physical sciences may be considered.
期刊最新文献
An improved version of PyWolf with multithread-based parallelism support A new way to use nonlocal symmetries to determine first integrals of second-order nonlinear ordinary differential equations An algorithm for the incorporation of relevant FVM boundary conditions in the Eulerian SPH framework On-the-fly clustering for exascale molecular dynamics simulations Implementation of magnetic compressional effects at arbitrary wavelength in the global version of GENE
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1