{"title":"探索隐藏信号:微调 ResNet-50 以探测暗物质","authors":"Ali Celik","doi":"10.1016/j.cpc.2024.109348","DOIUrl":null,"url":null,"abstract":"<div><p>In pursuit of detecting dark matter signals, the Large Hadron Collider (LHC) at CERN has conducted proton-proton collisions to probe for these elusive particles, whose existence has been supported by astronomical observations. Despite extensive efforts by the CMS and ATLAS experiments, the direct detection of dark matter signals remains elusive. The current approaches employed for analyzing dark matter signatures utilize the cut-and-count method based on conventional techniques. This study introduces an alternative method for exploring dark matter signatures by utilizing fine-tuning of pre-trained models, such as ResNet-50, on 2D histograms generated from a combination of signal + background samples and background-only samples. By utilizing various signal-to-background ratios as benchmarks, an accuracy of about 90% for a signal-to-background ratio of 0.008 is achieved. This approach not only offers a more refined search for dark matter signals but also presents an efficient and effective means of analysis using machine learning techniques.</p></div>","PeriodicalId":285,"journal":{"name":"Computer Physics Communications","volume":"305 ","pages":"Article 109348"},"PeriodicalIF":7.2000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring hidden signal: Fine-tuning ResNet-50 for dark matter detection\",\"authors\":\"Ali Celik\",\"doi\":\"10.1016/j.cpc.2024.109348\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In pursuit of detecting dark matter signals, the Large Hadron Collider (LHC) at CERN has conducted proton-proton collisions to probe for these elusive particles, whose existence has been supported by astronomical observations. Despite extensive efforts by the CMS and ATLAS experiments, the direct detection of dark matter signals remains elusive. The current approaches employed for analyzing dark matter signatures utilize the cut-and-count method based on conventional techniques. This study introduces an alternative method for exploring dark matter signatures by utilizing fine-tuning of pre-trained models, such as ResNet-50, on 2D histograms generated from a combination of signal + background samples and background-only samples. By utilizing various signal-to-background ratios as benchmarks, an accuracy of about 90% for a signal-to-background ratio of 0.008 is achieved. This approach not only offers a more refined search for dark matter signals but also presents an efficient and effective means of analysis using machine learning techniques.</p></div>\",\"PeriodicalId\":285,\"journal\":{\"name\":\"Computer Physics Communications\",\"volume\":\"305 \",\"pages\":\"Article 109348\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Physics Communications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010465524002716\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Physics Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010465524002716","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Exploring hidden signal: Fine-tuning ResNet-50 for dark matter detection
In pursuit of detecting dark matter signals, the Large Hadron Collider (LHC) at CERN has conducted proton-proton collisions to probe for these elusive particles, whose existence has been supported by astronomical observations. Despite extensive efforts by the CMS and ATLAS experiments, the direct detection of dark matter signals remains elusive. The current approaches employed for analyzing dark matter signatures utilize the cut-and-count method based on conventional techniques. This study introduces an alternative method for exploring dark matter signatures by utilizing fine-tuning of pre-trained models, such as ResNet-50, on 2D histograms generated from a combination of signal + background samples and background-only samples. By utilizing various signal-to-background ratios as benchmarks, an accuracy of about 90% for a signal-to-background ratio of 0.008 is achieved. This approach not only offers a more refined search for dark matter signals but also presents an efficient and effective means of analysis using machine learning techniques.
期刊介绍:
The focus of CPC is on contemporary computational methods and techniques and their implementation, the effectiveness of which will normally be evidenced by the author(s) within the context of a substantive problem in physics. Within this setting CPC publishes two types of paper.
Computer Programs in Physics (CPiP)
These papers describe significant computer programs to be archived in the CPC Program Library which is held in the Mendeley Data repository. The submitted software must be covered by an approved open source licence. Papers and associated computer programs that address a problem of contemporary interest in physics that cannot be solved by current software are particularly encouraged.
Computational Physics Papers (CP)
These are research papers in, but are not limited to, the following themes across computational physics and related disciplines.
mathematical and numerical methods and algorithms;
computational models including those associated with the design, control and analysis of experiments; and
algebraic computation.
Each will normally include software implementation and performance details. The software implementation should, ideally, be available via GitHub, Zenodo or an institutional repository.In addition, research papers on the impact of advanced computer architecture and special purpose computers on computing in the physical sciences and software topics related to, and of importance in, the physical sciences may be considered.