利用深度学习,使用光学相干断层血管造影-OCTA 检测老年群体的糖尿病视网膜病变:一种前景广阔的方法

IF 1.6 Q2 MULTIDISCIPLINARY SCIENCES MethodsX Pub Date : 2024-08-20 DOI:10.1016/j.mex.2024.102910
{"title":"利用深度学习,使用光学相干断层血管造影-OCTA 检测老年群体的糖尿病视网膜病变:一种前景广阔的方法","authors":"","doi":"10.1016/j.mex.2024.102910","DOIUrl":null,"url":null,"abstract":"<div><p>The prevalence of diabetic retinopathy (DR) among the geriatric population poses significant challenges for early detection and management. Optical Coherence Tomography Angiography (OCTA) combined with Deep Learning presents a promising avenue for improving diagnostic accuracy in this vulnerable demographic. In this method, we propose an innovative approach utilizing OCTA images and Deep Learning algorithms to detect diabetic retinopathy in geriatric patients. We have collected 262 OCTA scans of 179 elderly individuals, both with and without diabetes, and trained a deep-learning model to classify retinopathy severity levels. Convolutional Neural Network (CNN) models: Inception V3, ResNet-50, ResNet50V2, VggNet-16, VggNet-19, DenseNet121, DenseNet201, EfficientNetV2B0, are trained to extract features and further classify them.</p><p>Here we demonstrate:</p><ul><li><span>•</span><span><p>The potential of OCTA and Deep Learning in enhancing geriatric eye care at the very initial stage.</p></span></li><li><span>•</span><span><p>The importance of technological advancements in addressing age-related ocular diseases and providing reliable assistance to clinicians for DR classification.</p></span></li><li><span>•</span><span><p>The efficacy of this approach in accurately identifying diabetic retinopathy stages, thereby facilitating timely interventions, and preventing vision loss in the elderly population.</p></span></li></ul></div>","PeriodicalId":18446,"journal":{"name":"MethodsX","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2215016124003625/pdfft?md5=245062457c1d67dbd7e98797f7648ea8&pid=1-s2.0-S2215016124003625-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Harnessing deep learning for detection of diabetic retinopathy in geriatric group using optical coherence tomography angiography-OCTA: A promising approach\",\"authors\":\"\",\"doi\":\"10.1016/j.mex.2024.102910\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The prevalence of diabetic retinopathy (DR) among the geriatric population poses significant challenges for early detection and management. Optical Coherence Tomography Angiography (OCTA) combined with Deep Learning presents a promising avenue for improving diagnostic accuracy in this vulnerable demographic. In this method, we propose an innovative approach utilizing OCTA images and Deep Learning algorithms to detect diabetic retinopathy in geriatric patients. We have collected 262 OCTA scans of 179 elderly individuals, both with and without diabetes, and trained a deep-learning model to classify retinopathy severity levels. Convolutional Neural Network (CNN) models: Inception V3, ResNet-50, ResNet50V2, VggNet-16, VggNet-19, DenseNet121, DenseNet201, EfficientNetV2B0, are trained to extract features and further classify them.</p><p>Here we demonstrate:</p><ul><li><span>•</span><span><p>The potential of OCTA and Deep Learning in enhancing geriatric eye care at the very initial stage.</p></span></li><li><span>•</span><span><p>The importance of technological advancements in addressing age-related ocular diseases and providing reliable assistance to clinicians for DR classification.</p></span></li><li><span>•</span><span><p>The efficacy of this approach in accurately identifying diabetic retinopathy stages, thereby facilitating timely interventions, and preventing vision loss in the elderly population.</p></span></li></ul></div>\",\"PeriodicalId\":18446,\"journal\":{\"name\":\"MethodsX\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2215016124003625/pdfft?md5=245062457c1d67dbd7e98797f7648ea8&pid=1-s2.0-S2215016124003625-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MethodsX\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2215016124003625\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MethodsX","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215016124003625","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

糖尿病视网膜病变(DR)在老年人群中的发病率给早期检测和管理带来了巨大挑战。光学相干断层扫描血管造影术(OCTA)与深度学习相结合,为提高这一易患人群的诊断准确性提供了一条大有可为的途径。在本方法中,我们提出了一种利用 OCTA 图像和深度学习算法检测老年患者糖尿病视网膜病变的创新方法。我们收集了 179 名老年人的 262 张 OCTA 扫描图像,其中既有糖尿病患者也有非糖尿病患者,并训练了一个深度学习模型来对视网膜病变的严重程度进行分类。卷积神经网络(CNN)模型:Inception V3、ResNet-50、ResNet50V2、VggNet-16、VggNet-19、DenseNet121、DenseNet201、EfficientNetV2B0 接受训练,以提取特征并进一步分类。-技术进步在解决与年龄相关的眼部疾病以及为临床医生进行 DR 分类提供可靠帮助方面的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Harnessing deep learning for detection of diabetic retinopathy in geriatric group using optical coherence tomography angiography-OCTA: A promising approach

The prevalence of diabetic retinopathy (DR) among the geriatric population poses significant challenges for early detection and management. Optical Coherence Tomography Angiography (OCTA) combined with Deep Learning presents a promising avenue for improving diagnostic accuracy in this vulnerable demographic. In this method, we propose an innovative approach utilizing OCTA images and Deep Learning algorithms to detect diabetic retinopathy in geriatric patients. We have collected 262 OCTA scans of 179 elderly individuals, both with and without diabetes, and trained a deep-learning model to classify retinopathy severity levels. Convolutional Neural Network (CNN) models: Inception V3, ResNet-50, ResNet50V2, VggNet-16, VggNet-19, DenseNet121, DenseNet201, EfficientNetV2B0, are trained to extract features and further classify them.

Here we demonstrate:

  • The potential of OCTA and Deep Learning in enhancing geriatric eye care at the very initial stage.

  • The importance of technological advancements in addressing age-related ocular diseases and providing reliable assistance to clinicians for DR classification.

  • The efficacy of this approach in accurately identifying diabetic retinopathy stages, thereby facilitating timely interventions, and preventing vision loss in the elderly population.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
MethodsX
MethodsX Health Professions-Medical Laboratory Technology
CiteScore
3.60
自引率
5.30%
发文量
314
审稿时长
7 weeks
期刊最新文献
ViT-HHO: Optimized vision transformer for diabetic retinopathy detection using Harris Hawk optimization Standardized lab-scale production of the recombinant fusion protein HUG for the nanoscale analysis of bilirubin The TOPSIS method: Figuring the landslide susceptibility using Excel and GIS A method to improve binary forecast skill verification Automated prediction of phosphorus concentration in soils using reflectance spectroscopy and machine learning algorithms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1