{"title":"平行通道中密度波振荡的不稳定沼泽现象和边际稳定边界畸变","authors":"","doi":"10.1016/j.pnucene.2024.105409","DOIUrl":null,"url":null,"abstract":"<div><p>Density wave oscillation (DWO) in parallel channels is an important problem that has been widely studied. The marginal stability boundary (MSB) is often found to be “<em>L</em>\" shaped on the <em>N</em><sub>pch</sub>-<em>N</em><sub>sub</sub> plane, but some very different shapes were also reported. In this paper, the instability marsh region which could occur in the traditional instable region but having both instability and stability sections was presented and discussed, which is found to be an explanation of the distortion of MSB. The analysis of the instability marsh region showed that the evolution of instability marsh should be due to the stability change when operation condition changes, which can be estimated with the analysis of the two-phase and single phase pressure drop variation, as well as Ma's stability criterion for different heat flux profiles. Variation of instability marsh with different heat flux profile, inlet and outlet resistance coefficient, mass flow and pressure were obtained and analyzed, and the effects of these parameters on instability marsh variation were found to be well interpreted with stability change. The calculation and analysis of instability marsh showed a clear evolution figure of the distortion of MSB under different conditions, and related research could be helpful in better understanding the flow instability in parallel channels.</p></div>","PeriodicalId":20617,"journal":{"name":"Progress in Nuclear Energy","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The instability marsh phenomenon and marginal stability boundary distortion of density wave oscillation in parallel channels\",\"authors\":\"\",\"doi\":\"10.1016/j.pnucene.2024.105409\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Density wave oscillation (DWO) in parallel channels is an important problem that has been widely studied. The marginal stability boundary (MSB) is often found to be “<em>L</em>\\\" shaped on the <em>N</em><sub>pch</sub>-<em>N</em><sub>sub</sub> plane, but some very different shapes were also reported. In this paper, the instability marsh region which could occur in the traditional instable region but having both instability and stability sections was presented and discussed, which is found to be an explanation of the distortion of MSB. The analysis of the instability marsh region showed that the evolution of instability marsh should be due to the stability change when operation condition changes, which can be estimated with the analysis of the two-phase and single phase pressure drop variation, as well as Ma's stability criterion for different heat flux profiles. Variation of instability marsh with different heat flux profile, inlet and outlet resistance coefficient, mass flow and pressure were obtained and analyzed, and the effects of these parameters on instability marsh variation were found to be well interpreted with stability change. The calculation and analysis of instability marsh showed a clear evolution figure of the distortion of MSB under different conditions, and related research could be helpful in better understanding the flow instability in parallel channels.</p></div>\",\"PeriodicalId\":20617,\"journal\":{\"name\":\"Progress in Nuclear Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Nuclear Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0149197024003597\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Nuclear Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0149197024003597","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
The instability marsh phenomenon and marginal stability boundary distortion of density wave oscillation in parallel channels
Density wave oscillation (DWO) in parallel channels is an important problem that has been widely studied. The marginal stability boundary (MSB) is often found to be “L" shaped on the Npch-Nsub plane, but some very different shapes were also reported. In this paper, the instability marsh region which could occur in the traditional instable region but having both instability and stability sections was presented and discussed, which is found to be an explanation of the distortion of MSB. The analysis of the instability marsh region showed that the evolution of instability marsh should be due to the stability change when operation condition changes, which can be estimated with the analysis of the two-phase and single phase pressure drop variation, as well as Ma's stability criterion for different heat flux profiles. Variation of instability marsh with different heat flux profile, inlet and outlet resistance coefficient, mass flow and pressure were obtained and analyzed, and the effects of these parameters on instability marsh variation were found to be well interpreted with stability change. The calculation and analysis of instability marsh showed a clear evolution figure of the distortion of MSB under different conditions, and related research could be helpful in better understanding the flow instability in parallel channels.
期刊介绍:
Progress in Nuclear Energy is an international review journal covering all aspects of nuclear science and engineering. In keeping with the maturity of nuclear power, articles on safety, siting and environmental problems are encouraged, as are those associated with economics and fuel management. However, basic physics and engineering will remain an important aspect of the editorial policy. Articles published are either of a review nature or present new material in more depth. They are aimed at researchers and technically-oriented managers working in the nuclear energy field.
Please note the following:
1) PNE seeks high quality research papers which are medium to long in length. Short research papers should be submitted to the journal Annals in Nuclear Energy.
2) PNE reserves the right to reject papers which are based solely on routine application of computer codes used to produce reactor designs or explain existing reactor phenomena. Such papers, although worthy, are best left as laboratory reports whereas Progress in Nuclear Energy seeks papers of originality, which are archival in nature, in the fields of mathematical and experimental nuclear technology, including fission, fusion (blanket physics, radiation damage), safety, materials aspects, economics, etc.
3) Review papers, which may occasionally be invited, are particularly sought by the journal in these fields.