用于确定性 MEC 网络延迟预测的注意力机制增强型 LSTM 网络

Zhonglu Zou, Xin Yan, Yongshi Yuan, Zilin You, Liming Chen
{"title":"用于确定性 MEC 网络延迟预测的注意力机制增强型 LSTM 网络","authors":"Zhonglu Zou,&nbsp;Xin Yan,&nbsp;Yongshi Yuan,&nbsp;Zilin You,&nbsp;Liming Chen","doi":"10.1016/j.iswa.2024.200425","DOIUrl":null,"url":null,"abstract":"<div><p>In deterministic mobile edge computing (MEC) networks, accurately predicting latency is critical for optimizing resource allocation and enhancing quality of service (QoS). This paper introduces a novel approach leveraging attention mechanism enhanced long short-term memory (LSTM) networks to predict latency in MEC networks. The proposed model integrates attention mechanisms into LSTM networks to capture temporal dependency and emphasize relevant features in the input data, thereby improving the prediction accuracy. T extensive experiments are conducted by using practical MEC network data, demonstrating that the proposed approach significantly outperforms traditional LSTM and other baseline models in terms of prediction accuracy and computational efficiency. Additionally, we analyze the impact of various configurations in the attention mechanism and LSTM on the model performance, providing insights into the optimal settings. The findings of this study contribute to the advancement of latency prediction techniques in deterministic MEC networks, facilitating more efficient and reliable network management.</p></div>","PeriodicalId":100684,"journal":{"name":"Intelligent Systems with Applications","volume":"23 ","pages":"Article 200425"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667305324000991/pdfft?md5=ee47f3714c07656cbf13489f3b8c15dd&pid=1-s2.0-S2667305324000991-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Attention mechanism enhanced LSTM networks for latency prediction in deterministic MEC networks\",\"authors\":\"Zhonglu Zou,&nbsp;Xin Yan,&nbsp;Yongshi Yuan,&nbsp;Zilin You,&nbsp;Liming Chen\",\"doi\":\"10.1016/j.iswa.2024.200425\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In deterministic mobile edge computing (MEC) networks, accurately predicting latency is critical for optimizing resource allocation and enhancing quality of service (QoS). This paper introduces a novel approach leveraging attention mechanism enhanced long short-term memory (LSTM) networks to predict latency in MEC networks. The proposed model integrates attention mechanisms into LSTM networks to capture temporal dependency and emphasize relevant features in the input data, thereby improving the prediction accuracy. T extensive experiments are conducted by using practical MEC network data, demonstrating that the proposed approach significantly outperforms traditional LSTM and other baseline models in terms of prediction accuracy and computational efficiency. Additionally, we analyze the impact of various configurations in the attention mechanism and LSTM on the model performance, providing insights into the optimal settings. The findings of this study contribute to the advancement of latency prediction techniques in deterministic MEC networks, facilitating more efficient and reliable network management.</p></div>\",\"PeriodicalId\":100684,\"journal\":{\"name\":\"Intelligent Systems with Applications\",\"volume\":\"23 \",\"pages\":\"Article 200425\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2667305324000991/pdfft?md5=ee47f3714c07656cbf13489f3b8c15dd&pid=1-s2.0-S2667305324000991-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intelligent Systems with Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667305324000991\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Systems with Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667305324000991","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在确定性移动边缘计算(MEC)网络中,准确预测延迟对于优化资源分配和提高服务质量(QoS)至关重要。本文介绍了一种利用注意力机制增强型长短期记忆(LSTM)网络预测 MEC 网络延迟的新方法。所提出的模型将注意力机制集成到 LSTM 网络中,以捕捉时间依赖性并强调输入数据中的相关特征,从而提高预测准确性。我们使用实际的 MEC 网络数据进行了大量实验,结果表明所提出的方法在预测准确性和计算效率方面明显优于传统的 LSTM 和其他基线模型。此外,我们还分析了注意力机制和 LSTM 的各种配置对模型性能的影响,为最佳设置提供了启示。本研究的发现有助于推动确定性 MEC 网络中延迟预测技术的发展,从而促进更高效、更可靠的网络管理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Attention mechanism enhanced LSTM networks for latency prediction in deterministic MEC networks

In deterministic mobile edge computing (MEC) networks, accurately predicting latency is critical for optimizing resource allocation and enhancing quality of service (QoS). This paper introduces a novel approach leveraging attention mechanism enhanced long short-term memory (LSTM) networks to predict latency in MEC networks. The proposed model integrates attention mechanisms into LSTM networks to capture temporal dependency and emphasize relevant features in the input data, thereby improving the prediction accuracy. T extensive experiments are conducted by using practical MEC network data, demonstrating that the proposed approach significantly outperforms traditional LSTM and other baseline models in terms of prediction accuracy and computational efficiency. Additionally, we analyze the impact of various configurations in the attention mechanism and LSTM on the model performance, providing insights into the optimal settings. The findings of this study contribute to the advancement of latency prediction techniques in deterministic MEC networks, facilitating more efficient and reliable network management.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.60
自引率
0.00%
发文量
0
期刊最新文献
MapReduce teaching learning based optimization algorithm for solving CEC-2013 LSGO benchmark Testsuit Intelligent gear decision method for vehicle automatic transmission system based on data mining Design and implementation of EventsKG for situational monitoring and security intelligence in India: An open-source intelligence gathering approach Ideological orientation and extremism detection in online social networking sites: A systematic review Multi-objective optimization of power networks integrating electric vehicles and wind energy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1