抗血管内皮生长因子药物雷尼珠单抗负载聚乳酸(PLGA)/聚乳酸(PLA)共聚物纳米微孔的新型制备方法,用于治疗老年性黄斑变性的长效眼内给药疗法

IF 3.4 3区 环境科学与生态学 Q3 CELL & TISSUE ENGINEERING Regenerative Therapy Pub Date : 2024-06-01 DOI:10.1016/j.reth.2024.06.019
Jin-feng Xu , Yan-ping Wang , Xiao-hua Liu
{"title":"抗血管内皮生长因子药物雷尼珠单抗负载聚乳酸(PLGA)/聚乳酸(PLA)共聚物纳米微孔的新型制备方法,用于治疗老年性黄斑变性的长效眼内给药疗法","authors":"Jin-feng Xu ,&nbsp;Yan-ping Wang ,&nbsp;Xiao-hua Liu","doi":"10.1016/j.reth.2024.06.019","DOIUrl":null,"url":null,"abstract":"<div><p>Age associated macular degeneration is the 3rd primary cause of blind fundus diseases globally. A reliable and long-lasting method of intraocular drug delivery is still needed. Herein, this study was aim to develop the novel fabrication of ranibizumab loaded co-polymeric nanomicelles (Rabz-CP-NMs) for AMD. The CMC of co-polymeric nanomicelles was determined to be low, at 6.2 μg/ml. The ring copolymerization method was employed to fabricate the NMs and characterize via FTIR, XRD, TEM, DLS and Zeta potential. Rabz-CP-NMs was spherical shape with 10–50 nm in size. Stable and prolonged drug release was achieved with the Rabz from CP-NMs at 48 h. D407 and ARPE19 ocular cell lines showed dose-dependent cell viability with Rabz-CP-NMs. The Rabz-CP-NMs also had less toxicity, higher uptake, lower cell death and prolonged VEGF-A inhibition, as shown by cytoviability assay. Thus, Rabz-CP-NMs were safe for ocular use, suggesting that could be used to improve intraocular AMD treatment.</p></div>","PeriodicalId":20895,"journal":{"name":"Regenerative Therapy","volume":"26 ","pages":"Pages 620-634"},"PeriodicalIF":3.4000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352320424001251/pdfft?md5=70ba3ac0482faeebae6ace0a3fb8b684&pid=1-s2.0-S2352320424001251-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Novel fabrication of anti-VEGF drug ranibizumab loaded PLGA/PLA co-polymeric nanomicelles for long-acting intraocular delivery in the treatment of age-related macular degeneration therapy\",\"authors\":\"Jin-feng Xu ,&nbsp;Yan-ping Wang ,&nbsp;Xiao-hua Liu\",\"doi\":\"10.1016/j.reth.2024.06.019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Age associated macular degeneration is the 3rd primary cause of blind fundus diseases globally. A reliable and long-lasting method of intraocular drug delivery is still needed. Herein, this study was aim to develop the novel fabrication of ranibizumab loaded co-polymeric nanomicelles (Rabz-CP-NMs) for AMD. The CMC of co-polymeric nanomicelles was determined to be low, at 6.2 μg/ml. The ring copolymerization method was employed to fabricate the NMs and characterize via FTIR, XRD, TEM, DLS and Zeta potential. Rabz-CP-NMs was spherical shape with 10–50 nm in size. Stable and prolonged drug release was achieved with the Rabz from CP-NMs at 48 h. D407 and ARPE19 ocular cell lines showed dose-dependent cell viability with Rabz-CP-NMs. The Rabz-CP-NMs also had less toxicity, higher uptake, lower cell death and prolonged VEGF-A inhibition, as shown by cytoviability assay. Thus, Rabz-CP-NMs were safe for ocular use, suggesting that could be used to improve intraocular AMD treatment.</p></div>\",\"PeriodicalId\":20895,\"journal\":{\"name\":\"Regenerative Therapy\",\"volume\":\"26 \",\"pages\":\"Pages 620-634\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2352320424001251/pdfft?md5=70ba3ac0482faeebae6ace0a3fb8b684&pid=1-s2.0-S2352320424001251-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Regenerative Therapy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352320424001251\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regenerative Therapy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352320424001251","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

年龄相关性黄斑变性是全球眼底病致盲的第三大主要原因。目前仍需要一种可靠而持久的眼内给药方法。因此,本研究旨在开发一种新型共聚物纳米微囊(Rabz-CP-NMs),用于治疗老年性黄斑变性。共聚纳米微球的 CMC 值较低,为 6.2 μg/ml。采用环状共聚法制造了纳米微囊,并通过傅立叶变换红外光谱、X射线衍射、TEM、DLS和Zeta电位进行了表征。Rabz-CP-NMs 呈球形,大小为 10-50 纳米。Rabz-CP-NMs 与 D407 和 ARPE19 眼细胞系的细胞活力呈剂量依赖关系。细胞活力测定结果表明,Rabz-CP-NMs 的毒性更小、吸收率更高、细胞死亡率更低,而且对血管内皮生长因子-A 的抑制作用更持久。因此,Rabz-CP-NMs 在眼部使用是安全的,这表明它可用于改善眼内 AMD 的治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Novel fabrication of anti-VEGF drug ranibizumab loaded PLGA/PLA co-polymeric nanomicelles for long-acting intraocular delivery in the treatment of age-related macular degeneration therapy

Age associated macular degeneration is the 3rd primary cause of blind fundus diseases globally. A reliable and long-lasting method of intraocular drug delivery is still needed. Herein, this study was aim to develop the novel fabrication of ranibizumab loaded co-polymeric nanomicelles (Rabz-CP-NMs) for AMD. The CMC of co-polymeric nanomicelles was determined to be low, at 6.2 μg/ml. The ring copolymerization method was employed to fabricate the NMs and characterize via FTIR, XRD, TEM, DLS and Zeta potential. Rabz-CP-NMs was spherical shape with 10–50 nm in size. Stable and prolonged drug release was achieved with the Rabz from CP-NMs at 48 h. D407 and ARPE19 ocular cell lines showed dose-dependent cell viability with Rabz-CP-NMs. The Rabz-CP-NMs also had less toxicity, higher uptake, lower cell death and prolonged VEGF-A inhibition, as shown by cytoviability assay. Thus, Rabz-CP-NMs were safe for ocular use, suggesting that could be used to improve intraocular AMD treatment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Regenerative Therapy
Regenerative Therapy Engineering-Biomedical Engineering
CiteScore
6.00
自引率
2.30%
发文量
106
审稿时长
49 days
期刊介绍: Regenerative Therapy is the official peer-reviewed online journal of the Japanese Society for Regenerative Medicine. Regenerative Therapy is a multidisciplinary journal that publishes original articles and reviews of basic research, clinical translation, industrial development, and regulatory issues focusing on stem cell biology, tissue engineering, and regenerative medicine.
期刊最新文献
Approach of design for air mass balance in an aseptic processing area for cell-based products Therapeutic effects of mesenchymal stem cell conditioned media on streptozotocin-induced diabetes in Wistar rats Research of in vivo reprogramming toward clinical applications in regenerative medicine: A concise review A scientometric and visualization analysis of 3D printing scaffolds for vascularized bone tissue engineering over the last decade. Extracellular vesicles originating from the mechanical microenvironment in the pathogenesis and applications for cardiovascular diseases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1