调节植物细胞中的 PCD:细胞内酸化与钙信号一起发挥着关键作用。

IF 10 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Plant Cell Pub Date : 2024-11-02 DOI:10.1093/plcell/koae245
Maurice Bosch, Vernonica Franklin-Tong
{"title":"调节植物细胞中的 PCD:细胞内酸化与钙信号一起发挥着关键作用。","authors":"Maurice Bosch, Vernonica Franklin-Tong","doi":"10.1093/plcell/koae245","DOIUrl":null,"url":null,"abstract":"<p><p>Programmed cell death (PCD) occurs in different tissues in response to a number of different signals in plant cells. Drawing from work in several different contexts, including root-cap cell differentiation, plant response to biotic and abiotic stress, and some self-incompatibility (SI) systems, the data suggest that, despite differences, there are underlying commonalities in the early decision-making stages of PCD. Here, we focus on how 2 cellular events, increased [Ca2+]cyt levels and cytosolic acidification, appear to act as early signals involved in regulating both developmental and stimulus-induced PCD in plant cells.</p>","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":"4692-4702"},"PeriodicalIF":10.0000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11530775/pdf/","citationCount":"0","resultStr":"{\"title\":\"Regulating programmed cell death in plant cells: Intracellular acidification plays a pivotal role together with calcium signaling.\",\"authors\":\"Maurice Bosch, Vernonica Franklin-Tong\",\"doi\":\"10.1093/plcell/koae245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Programmed cell death (PCD) occurs in different tissues in response to a number of different signals in plant cells. Drawing from work in several different contexts, including root-cap cell differentiation, plant response to biotic and abiotic stress, and some self-incompatibility (SI) systems, the data suggest that, despite differences, there are underlying commonalities in the early decision-making stages of PCD. Here, we focus on how 2 cellular events, increased [Ca2+]cyt levels and cytosolic acidification, appear to act as early signals involved in regulating both developmental and stimulus-induced PCD in plant cells.</p>\",\"PeriodicalId\":20186,\"journal\":{\"name\":\"Plant Cell\",\"volume\":\" \",\"pages\":\"4692-4702\"},\"PeriodicalIF\":10.0000,\"publicationDate\":\"2024-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11530775/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/plcell/koae245\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/plcell/koae245","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

程序性细胞死亡(PCD)发生在不同的组织中,是对植物细胞中许多不同信号的反应。从根帽细胞分化、植物对生物和非生物胁迫的反应以及一些自相容性(SI)系统等几种不同情况下的工作中汲取的数据表明,尽管存在差异,但程序性细胞死亡的早期决策阶段存在潜在的共性。在这里,我们将重点研究[Ca2+]cyt 水平升高和细胞酸化这两种细胞事件是如何作为早期信号参与调节植物细胞发育和刺激诱导的 PCD 的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Regulating programmed cell death in plant cells: Intracellular acidification plays a pivotal role together with calcium signaling.

Programmed cell death (PCD) occurs in different tissues in response to a number of different signals in plant cells. Drawing from work in several different contexts, including root-cap cell differentiation, plant response to biotic and abiotic stress, and some self-incompatibility (SI) systems, the data suggest that, despite differences, there are underlying commonalities in the early decision-making stages of PCD. Here, we focus on how 2 cellular events, increased [Ca2+]cyt levels and cytosolic acidification, appear to act as early signals involved in regulating both developmental and stimulus-induced PCD in plant cells.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plant Cell
Plant Cell 生物-生化与分子生物学
CiteScore
16.90
自引率
5.20%
发文量
337
审稿时长
2.4 months
期刊介绍: Title: Plant Cell Publisher: Published monthly by the American Society of Plant Biologists (ASPB) Produced by Sheridan Journal Services, Waterbury, VT History and Impact: Established in 1989 Within three years of publication, ranked first in impact among journals in plant sciences Maintains high standard of excellence Scope: Publishes novel research of special significance in plant biology Focus areas include cellular biology, molecular biology, biochemistry, genetics, development, and evolution Primary criteria: articles provide new insight of broad interest to plant biologists and are suitable for a wide audience Tenets: Publish the most exciting, cutting-edge research in plant cellular and molecular biology Provide rapid turnaround time for reviewing and publishing research papers Ensure highest quality reproduction of data Feature interactive format for commentaries, opinion pieces, and exchange of information in review articles, meeting reports, and insightful overviews.
期刊最新文献
KNUCKLES Regulates Floral Meristem Termination by Controlling Auxin Distribution and Cytokinin Activity. A new light on the UFO mystery: Zmufo1 encodes a nuclear protein that modulates redox levels and epigenetic status during basal endosperm differentiation in maize. Tackling vascular wilt disease: A signaling cascade to strengthen the plant cell wall. The older the wiser, unless you are a banana: The NAP1-MADS1 network in the regulation of banana ripening. Comparative RNA profiling identifies stage-specific phasiRNAs and coexpressed Argonaute genes in Bambusoideae and Pooideae species.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1