{"title":"监督和惩罚基线校正","authors":"Erik Andries , Ramin Nikzad-Langerodi","doi":"10.1016/j.chemolab.2024.105200","DOIUrl":null,"url":null,"abstract":"<div><p>Spectroscopic measurements can show distorted spectral shapes arising from a mixture of absorbing and scattering contributions. These distortions (or baselines) often manifest themselves as non-constant offsets or low-frequency oscillations. As a result, these baselines can adversely affect analytical and quantitative results. Baseline correction is an umbrella term where one applies pre-processing methods to obtain baseline spectra (the unwanted distortions) and then remove the distortions by differencing. However, current state-of-the art baseline correction methods do not utilize analyte concentrations even if they are available, or even if they contribute significantly to the observed spectral variability. We modify a class of state-of-the-art methods (<em>penalized baseline correction</em>) that easily admit the incorporation of a priori analyte concentrations such that predictions can be enhanced. This modified approach will be deemed <em>supervised and penalized baseline correction</em> (SPBC). Performance will be assessed on two near infrared data sets across both classical penalized baseline correction methods (without analyte information) and modified penalized baseline correction methods (leveraging analyte information). There are cases of SPBC that provide useful baseline-corrected signals such that they outperform state-of-the-art penalized baseline correction algorithms such as AIRPLS. In particular, we observe that performance is conditional on the correlation between separate analytes: the analyte used for baseline correlation and the analyte used for prediction—the greater the correlation between the analyte used for baseline correlation and the analyte used for prediction, the better the prediction performance.</p></div>","PeriodicalId":9774,"journal":{"name":"Chemometrics and Intelligent Laboratory Systems","volume":"253 ","pages":"Article 105200"},"PeriodicalIF":3.7000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Supervised and penalized baseline correction\",\"authors\":\"Erik Andries , Ramin Nikzad-Langerodi\",\"doi\":\"10.1016/j.chemolab.2024.105200\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Spectroscopic measurements can show distorted spectral shapes arising from a mixture of absorbing and scattering contributions. These distortions (or baselines) often manifest themselves as non-constant offsets or low-frequency oscillations. As a result, these baselines can adversely affect analytical and quantitative results. Baseline correction is an umbrella term where one applies pre-processing methods to obtain baseline spectra (the unwanted distortions) and then remove the distortions by differencing. However, current state-of-the art baseline correction methods do not utilize analyte concentrations even if they are available, or even if they contribute significantly to the observed spectral variability. We modify a class of state-of-the-art methods (<em>penalized baseline correction</em>) that easily admit the incorporation of a priori analyte concentrations such that predictions can be enhanced. This modified approach will be deemed <em>supervised and penalized baseline correction</em> (SPBC). Performance will be assessed on two near infrared data sets across both classical penalized baseline correction methods (without analyte information) and modified penalized baseline correction methods (leveraging analyte information). There are cases of SPBC that provide useful baseline-corrected signals such that they outperform state-of-the-art penalized baseline correction algorithms such as AIRPLS. In particular, we observe that performance is conditional on the correlation between separate analytes: the analyte used for baseline correlation and the analyte used for prediction—the greater the correlation between the analyte used for baseline correlation and the analyte used for prediction, the better the prediction performance.</p></div>\",\"PeriodicalId\":9774,\"journal\":{\"name\":\"Chemometrics and Intelligent Laboratory Systems\",\"volume\":\"253 \",\"pages\":\"Article 105200\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemometrics and Intelligent Laboratory Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169743924001400\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemometrics and Intelligent Laboratory Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169743924001400","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Spectroscopic measurements can show distorted spectral shapes arising from a mixture of absorbing and scattering contributions. These distortions (or baselines) often manifest themselves as non-constant offsets or low-frequency oscillations. As a result, these baselines can adversely affect analytical and quantitative results. Baseline correction is an umbrella term where one applies pre-processing methods to obtain baseline spectra (the unwanted distortions) and then remove the distortions by differencing. However, current state-of-the art baseline correction methods do not utilize analyte concentrations even if they are available, or even if they contribute significantly to the observed spectral variability. We modify a class of state-of-the-art methods (penalized baseline correction) that easily admit the incorporation of a priori analyte concentrations such that predictions can be enhanced. This modified approach will be deemed supervised and penalized baseline correction (SPBC). Performance will be assessed on two near infrared data sets across both classical penalized baseline correction methods (without analyte information) and modified penalized baseline correction methods (leveraging analyte information). There are cases of SPBC that provide useful baseline-corrected signals such that they outperform state-of-the-art penalized baseline correction algorithms such as AIRPLS. In particular, we observe that performance is conditional on the correlation between separate analytes: the analyte used for baseline correlation and the analyte used for prediction—the greater the correlation between the analyte used for baseline correlation and the analyte used for prediction, the better the prediction performance.
期刊介绍:
Chemometrics and Intelligent Laboratory Systems publishes original research papers, short communications, reviews, tutorials and Original Software Publications reporting on development of novel statistical, mathematical, or computer techniques in Chemistry and related disciplines.
Chemometrics is the chemical discipline that uses mathematical and statistical methods to design or select optimal procedures and experiments, and to provide maximum chemical information by analysing chemical data.
The journal deals with the following topics:
1) Development of new statistical, mathematical and chemometrical methods for Chemistry and related fields (Environmental Chemistry, Biochemistry, Toxicology, System Biology, -Omics, etc.)
2) Novel applications of chemometrics to all branches of Chemistry and related fields (typical domains of interest are: process data analysis, experimental design, data mining, signal processing, supervised modelling, decision making, robust statistics, mixture analysis, multivariate calibration etc.) Routine applications of established chemometrical techniques will not be considered.
3) Development of new software that provides novel tools or truly advances the use of chemometrical methods.
4) Well characterized data sets to test performance for the new methods and software.
The journal complies with International Committee of Medical Journal Editors'' Uniform requirements for manuscripts.