利用机器学习模型对无线物联网 ICU 流量进行分类

Fadi N. Sibai , Ahmad Sibai
{"title":"利用机器学习模型对无线物联网 ICU 流量进行分类","authors":"Fadi N. Sibai ,&nbsp;Ahmad Sibai","doi":"10.1016/j.procs.2024.08.018","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, we classified the wireless internet of things (IoT) traffic of the IoT Health intensive care unit (IHI) dataset which belongs to three general classes: patient monitoring, environment monitoring, and network attack. We trained and tested 7 machine learning (ML) models with Orange 3 including kNN, Decision Tree (tree), SVM, Random Forest (RF), Neural Network (NN), Gradient Boosting (GB), and AdaBoost (AB). With the original dataset, 5 ML models performed perfect classification. After pruning the dataset columns by keeping the features with the highest correlations with the label in the dataset, good classifications were obtained with only 4 TCP/IP features by the Gradient Boosting, kNN, and RF models with MSEs in the range 0.008-0.011, and R<sup>2</sup>s in the range 0.978-0.984. With only 6 MQTT features, Gradient Boosting, RF, Tree, and NN were the top classifiers with MSEs in the range 0.073-0.074, and R<sup>2</sup>s in the range 0.856-0.859. This work demonstrates the effectiveness of guiding the feature pruning process by the values of the correlation coefficients in order to minimize the long training times of ML models while achieving good accuracies.</p></div>","PeriodicalId":20465,"journal":{"name":"Procedia Computer Science","volume":"241 ","pages":"Pages 123-128"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1877050924017290/pdf?md5=c399a0c1ccebd138c3e3a99fb71ebab6&pid=1-s2.0-S1877050924017290-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Classifying wireless IOT ICU traffic with machine learning models\",\"authors\":\"Fadi N. Sibai ,&nbsp;Ahmad Sibai\",\"doi\":\"10.1016/j.procs.2024.08.018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this work, we classified the wireless internet of things (IoT) traffic of the IoT Health intensive care unit (IHI) dataset which belongs to three general classes: patient monitoring, environment monitoring, and network attack. We trained and tested 7 machine learning (ML) models with Orange 3 including kNN, Decision Tree (tree), SVM, Random Forest (RF), Neural Network (NN), Gradient Boosting (GB), and AdaBoost (AB). With the original dataset, 5 ML models performed perfect classification. After pruning the dataset columns by keeping the features with the highest correlations with the label in the dataset, good classifications were obtained with only 4 TCP/IP features by the Gradient Boosting, kNN, and RF models with MSEs in the range 0.008-0.011, and R<sup>2</sup>s in the range 0.978-0.984. With only 6 MQTT features, Gradient Boosting, RF, Tree, and NN were the top classifiers with MSEs in the range 0.073-0.074, and R<sup>2</sup>s in the range 0.856-0.859. This work demonstrates the effectiveness of guiding the feature pruning process by the values of the correlation coefficients in order to minimize the long training times of ML models while achieving good accuracies.</p></div>\",\"PeriodicalId\":20465,\"journal\":{\"name\":\"Procedia Computer Science\",\"volume\":\"241 \",\"pages\":\"Pages 123-128\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1877050924017290/pdf?md5=c399a0c1ccebd138c3e3a99fb71ebab6&pid=1-s2.0-S1877050924017290-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Procedia Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1877050924017290\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1877050924017290","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们对物联网健康重症监护室(IHI)数据集的无线物联网(IoT)流量进行了分类,该数据集分为三个大类:患者监测、环境监测和网络攻击。我们使用 Orange 3 训练和测试了 7 种机器学习(ML)模型,包括 kNN、决策树(树)、SVM、随机森林(RF)、神经网络(NN)、梯度提升(GB)和 AdaBoost(AB)。对于原始数据集,5 个 ML 模型进行了完美的分类。通过保留数据集中与标签相关性最高的特征,对数据集列进行剪枝后,梯度提升、kNN 和 RF 模型仅使用 4 个 TCP/IP 特征就获得了良好的分类效果,MSE 在 0.008-0.011 之间,R2 在 0.978-0.984 之间。在只有 6 个 MQTT 特征的情况下,梯度提升、RF、树和 NN 是最好的分类器,MSE 在 0.073-0.074 之间,R2 在 0.856-0.859 之间。这项工作证明了通过相关系数值指导特征剪枝过程的有效性,从而在获得良好准确度的同时最大限度地缩短 ML 模型漫长的训练时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Classifying wireless IOT ICU traffic with machine learning models

In this work, we classified the wireless internet of things (IoT) traffic of the IoT Health intensive care unit (IHI) dataset which belongs to three general classes: patient monitoring, environment monitoring, and network attack. We trained and tested 7 machine learning (ML) models with Orange 3 including kNN, Decision Tree (tree), SVM, Random Forest (RF), Neural Network (NN), Gradient Boosting (GB), and AdaBoost (AB). With the original dataset, 5 ML models performed perfect classification. After pruning the dataset columns by keeping the features with the highest correlations with the label in the dataset, good classifications were obtained with only 4 TCP/IP features by the Gradient Boosting, kNN, and RF models with MSEs in the range 0.008-0.011, and R2s in the range 0.978-0.984. With only 6 MQTT features, Gradient Boosting, RF, Tree, and NN were the top classifiers with MSEs in the range 0.073-0.074, and R2s in the range 0.856-0.859. This work demonstrates the effectiveness of guiding the feature pruning process by the values of the correlation coefficients in order to minimize the long training times of ML models while achieving good accuracies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.50
自引率
0.00%
发文量
0
期刊最新文献
Circular Supply Chains and Industry 4.0: An Analysis of Interfaces in Brazilian Foodtechs Potentials of the Metaverse for Robotized Applications in Industry 4.0 and Industry 5.0 Preface Preface Contents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1