{"title":"应用于微阵列数据分类的新型基因选择并行特征等级聚合算法","authors":"Imtisenla Longkumer, Dilwar Hussain Mazumder","doi":"10.1016/j.compbiolchem.2024.108182","DOIUrl":null,"url":null,"abstract":"<div><p>Microarray data often comprises numerous genes, yet not all genes are relevant for predicting cancer. Feature selection becomes a crucial step to reduce the high dimensionality in these kinds of data. While no single feature selection method consistently outperforms others across diverse domains, the combination of multiple feature selectors or rankers tends to produce more effective results compared to relying on a single ranker alone. However, this approach can be computationally expensive, particularly when handling a large quantity of features. Hence, this paper presents a parallel feature rank aggregation that utilizes borda count as the rank aggregator. The concept of vertically partitioning the data along feature space was adapted to ease the parallel execution of the aggregation task. Features were selected based on the final aggregated rank list, and their classification performances were evaluated. The model’s execution time was also observed across multiple worker nodes of the cluster. The experiment was conducted on six benchmark microarray datasets. The results show the capability of the proposed distributed framework compared to the sequential version in all the cases. It also illustrated the improved accuracy performance of the proposed method and its ability to select a minimal number of genes.</p></div>","PeriodicalId":10616,"journal":{"name":"Computational Biology and Chemistry","volume":"112 ","pages":"Article 108182"},"PeriodicalIF":2.6000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel parallel feature rank aggregation algorithm for gene selection applied to microarray data classification\",\"authors\":\"Imtisenla Longkumer, Dilwar Hussain Mazumder\",\"doi\":\"10.1016/j.compbiolchem.2024.108182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Microarray data often comprises numerous genes, yet not all genes are relevant for predicting cancer. Feature selection becomes a crucial step to reduce the high dimensionality in these kinds of data. While no single feature selection method consistently outperforms others across diverse domains, the combination of multiple feature selectors or rankers tends to produce more effective results compared to relying on a single ranker alone. However, this approach can be computationally expensive, particularly when handling a large quantity of features. Hence, this paper presents a parallel feature rank aggregation that utilizes borda count as the rank aggregator. The concept of vertically partitioning the data along feature space was adapted to ease the parallel execution of the aggregation task. Features were selected based on the final aggregated rank list, and their classification performances were evaluated. The model’s execution time was also observed across multiple worker nodes of the cluster. The experiment was conducted on six benchmark microarray datasets. The results show the capability of the proposed distributed framework compared to the sequential version in all the cases. It also illustrated the improved accuracy performance of the proposed method and its ability to select a minimal number of genes.</p></div>\",\"PeriodicalId\":10616,\"journal\":{\"name\":\"Computational Biology and Chemistry\",\"volume\":\"112 \",\"pages\":\"Article 108182\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Biology and Chemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1476927124001701\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Biology and Chemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1476927124001701","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
A novel parallel feature rank aggregation algorithm for gene selection applied to microarray data classification
Microarray data often comprises numerous genes, yet not all genes are relevant for predicting cancer. Feature selection becomes a crucial step to reduce the high dimensionality in these kinds of data. While no single feature selection method consistently outperforms others across diverse domains, the combination of multiple feature selectors or rankers tends to produce more effective results compared to relying on a single ranker alone. However, this approach can be computationally expensive, particularly when handling a large quantity of features. Hence, this paper presents a parallel feature rank aggregation that utilizes borda count as the rank aggregator. The concept of vertically partitioning the data along feature space was adapted to ease the parallel execution of the aggregation task. Features were selected based on the final aggregated rank list, and their classification performances were evaluated. The model’s execution time was also observed across multiple worker nodes of the cluster. The experiment was conducted on six benchmark microarray datasets. The results show the capability of the proposed distributed framework compared to the sequential version in all the cases. It also illustrated the improved accuracy performance of the proposed method and its ability to select a minimal number of genes.
期刊介绍:
Computational Biology and Chemistry publishes original research papers and review articles in all areas of computational life sciences. High quality research contributions with a major computational component in the areas of nucleic acid and protein sequence research, molecular evolution, molecular genetics (functional genomics and proteomics), theory and practice of either biology-specific or chemical-biology-specific modeling, and structural biology of nucleic acids and proteins are particularly welcome. Exceptionally high quality research work in bioinformatics, systems biology, ecology, computational pharmacology, metabolism, biomedical engineering, epidemiology, and statistical genetics will also be considered.
Given their inherent uncertainty, protein modeling and molecular docking studies should be thoroughly validated. In the absence of experimental results for validation, the use of molecular dynamics simulations along with detailed free energy calculations, for example, should be used as complementary techniques to support the major conclusions. Submissions of premature modeling exercises without additional biological insights will not be considered.
Review articles will generally be commissioned by the editors and should not be submitted to the journal without explicit invitation. However prospective authors are welcome to send a brief (one to three pages) synopsis, which will be evaluated by the editors.