Yenisel Cruz-Almeida , Bella Mehta , Nele A. Haelterman , Alisa J. Johnson , Chloe Heiting , Malin Ernberg , Dana Orange , Martin Lotz , Jacqueline Boccanfuso , Shad B. Smith , Marlena Pela , Jyl Boline , Miguel Otero , Kyle Allen , Daniel Perez , Christopher Donnelly , Alejandro Almarza , Merissa Olmer , Henah Balkhi , Joost Wagenaar , Maryann Martone
{"title":"RE-JOIN 研究联盟的临床和生物行为表型评估及数据协调:通用数据元素选择建议","authors":"Yenisel Cruz-Almeida , Bella Mehta , Nele A. Haelterman , Alisa J. Johnson , Chloe Heiting , Malin Ernberg , Dana Orange , Martin Lotz , Jacqueline Boccanfuso , Shad B. Smith , Marlena Pela , Jyl Boline , Miguel Otero , Kyle Allen , Daniel Perez , Christopher Donnelly , Alejandro Almarza , Merissa Olmer , Henah Balkhi , Joost Wagenaar , Maryann Martone","doi":"10.1016/j.ynpai.2024.100163","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>The Restoring Joint Health and Function to Reduce Pain (RE-JOIN) Consortium is part of the Helping to End Addiction Long-term® (HEAL) Initiative. HEAL is an ambitious, NIH-wide initiative to speed scientific solutions to stem the national opioid public health crisis. The RE-JOIN consortium’s over-arching goal is to define how chronic joint pain-mediating neurons innervate different articular and <em>peri</em>-articular tissues, with a focus on the knee and temporomandibular joints (TMJ) across species employing the latest neuroscience approaches. The aim of this manuscript is to elucidate the human data gathered by the RE-JOIN consortium, as well as to expound upon its underlying rationale and the methodologies and protocols for harmonization and standardization that have been instituted by the RE-JOIN Consortium.</p></div><div><h3>Methods</h3><p>The consortium-wide human models working subgroup established the RE-JOIN minimal harmonized data elements that will be collected across all human studies and set the stage to develop parallel pre-clinical data collection standards. Data harmonization considerations included requirements from the HEAL program and recommendations from the consortium’s researchers and experts on informatics, knowledge management, and data curation.</p></div><div><h3>Results</h3><p>Multidisciplinary experts − including preclinical and clinical researchers, with both clinician-scientists- developed the RE-JOIN’s Minimal Human Data Standard with required domains and outcome measures to be collected across projects and institutions. The RE-JOIN minimal data standard will include HEAL Common Data Elements (CDEs) (e.g., standardized demographics, general pain, psychosocial and functional measures), and RE-JOIN common data elements (R-CDE) (i.e., both general and joint-specific standardized and clinically important self-reported pain and function measures, as well as pressure pain thresholds part of quantitative sensory testing). In addition, discretionary, site-specific measures will be collected by individual institutions (e.g., expanded quantitative sensory testing and gait biomechanical assessments), specific to the knee or TMJ. Research teams will submit datasets of standardized metadata to the RE-JOIN Data Coordinating Center (DCG) via a secure cloud-based central data repository and computing infrastructure for researchers to share and conduct analyses on data collected by or acquired for RE-JOIN. RE-JOIN datasets will have protected health information (PHI) removed and be publicly available on the SPARC portal and accessible through the HEAL Data Ecosystem.</p></div><div><h3>Conclusion</h3><p>Data Harmonization efforts provide the multidisciplinary consortium with an opportunity to effectively collaborate across decentralized research teams, and data standardization sets the framework for efficient future analyses of RE-JOIN data collected by the consortium. The harmonized phenotypic information obtained will significantly enhance our understanding of the neurobiology of the pain-pathology relationships in humans, providing valuable insights for comparison with pre-clinical models.</p></div>","PeriodicalId":52177,"journal":{"name":"Neurobiology of Pain","volume":"16 ","pages":"Article 100163"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2452073X2400014X/pdfft?md5=d0191c1c3bd2ea8857132f5af2a7e280&pid=1-s2.0-S2452073X2400014X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Clinical and biobehavioral phenotypic assessments and data harmonization for the RE-JOIN research consortium: Recommendations for common data element selection\",\"authors\":\"Yenisel Cruz-Almeida , Bella Mehta , Nele A. Haelterman , Alisa J. Johnson , Chloe Heiting , Malin Ernberg , Dana Orange , Martin Lotz , Jacqueline Boccanfuso , Shad B. Smith , Marlena Pela , Jyl Boline , Miguel Otero , Kyle Allen , Daniel Perez , Christopher Donnelly , Alejandro Almarza , Merissa Olmer , Henah Balkhi , Joost Wagenaar , Maryann Martone\",\"doi\":\"10.1016/j.ynpai.2024.100163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>The Restoring Joint Health and Function to Reduce Pain (RE-JOIN) Consortium is part of the Helping to End Addiction Long-term® (HEAL) Initiative. HEAL is an ambitious, NIH-wide initiative to speed scientific solutions to stem the national opioid public health crisis. The RE-JOIN consortium’s over-arching goal is to define how chronic joint pain-mediating neurons innervate different articular and <em>peri</em>-articular tissues, with a focus on the knee and temporomandibular joints (TMJ) across species employing the latest neuroscience approaches. The aim of this manuscript is to elucidate the human data gathered by the RE-JOIN consortium, as well as to expound upon its underlying rationale and the methodologies and protocols for harmonization and standardization that have been instituted by the RE-JOIN Consortium.</p></div><div><h3>Methods</h3><p>The consortium-wide human models working subgroup established the RE-JOIN minimal harmonized data elements that will be collected across all human studies and set the stage to develop parallel pre-clinical data collection standards. Data harmonization considerations included requirements from the HEAL program and recommendations from the consortium’s researchers and experts on informatics, knowledge management, and data curation.</p></div><div><h3>Results</h3><p>Multidisciplinary experts − including preclinical and clinical researchers, with both clinician-scientists- developed the RE-JOIN’s Minimal Human Data Standard with required domains and outcome measures to be collected across projects and institutions. The RE-JOIN minimal data standard will include HEAL Common Data Elements (CDEs) (e.g., standardized demographics, general pain, psychosocial and functional measures), and RE-JOIN common data elements (R-CDE) (i.e., both general and joint-specific standardized and clinically important self-reported pain and function measures, as well as pressure pain thresholds part of quantitative sensory testing). In addition, discretionary, site-specific measures will be collected by individual institutions (e.g., expanded quantitative sensory testing and gait biomechanical assessments), specific to the knee or TMJ. Research teams will submit datasets of standardized metadata to the RE-JOIN Data Coordinating Center (DCG) via a secure cloud-based central data repository and computing infrastructure for researchers to share and conduct analyses on data collected by or acquired for RE-JOIN. RE-JOIN datasets will have protected health information (PHI) removed and be publicly available on the SPARC portal and accessible through the HEAL Data Ecosystem.</p></div><div><h3>Conclusion</h3><p>Data Harmonization efforts provide the multidisciplinary consortium with an opportunity to effectively collaborate across decentralized research teams, and data standardization sets the framework for efficient future analyses of RE-JOIN data collected by the consortium. The harmonized phenotypic information obtained will significantly enhance our understanding of the neurobiology of the pain-pathology relationships in humans, providing valuable insights for comparison with pre-clinical models.</p></div>\",\"PeriodicalId\":52177,\"journal\":{\"name\":\"Neurobiology of Pain\",\"volume\":\"16 \",\"pages\":\"Article 100163\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2452073X2400014X/pdfft?md5=d0191c1c3bd2ea8857132f5af2a7e280&pid=1-s2.0-S2452073X2400014X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurobiology of Pain\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452073X2400014X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurobiology of Pain","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452073X2400014X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
Clinical and biobehavioral phenotypic assessments and data harmonization for the RE-JOIN research consortium: Recommendations for common data element selection
Background
The Restoring Joint Health and Function to Reduce Pain (RE-JOIN) Consortium is part of the Helping to End Addiction Long-term® (HEAL) Initiative. HEAL is an ambitious, NIH-wide initiative to speed scientific solutions to stem the national opioid public health crisis. The RE-JOIN consortium’s over-arching goal is to define how chronic joint pain-mediating neurons innervate different articular and peri-articular tissues, with a focus on the knee and temporomandibular joints (TMJ) across species employing the latest neuroscience approaches. The aim of this manuscript is to elucidate the human data gathered by the RE-JOIN consortium, as well as to expound upon its underlying rationale and the methodologies and protocols for harmonization and standardization that have been instituted by the RE-JOIN Consortium.
Methods
The consortium-wide human models working subgroup established the RE-JOIN minimal harmonized data elements that will be collected across all human studies and set the stage to develop parallel pre-clinical data collection standards. Data harmonization considerations included requirements from the HEAL program and recommendations from the consortium’s researchers and experts on informatics, knowledge management, and data curation.
Results
Multidisciplinary experts − including preclinical and clinical researchers, with both clinician-scientists- developed the RE-JOIN’s Minimal Human Data Standard with required domains and outcome measures to be collected across projects and institutions. The RE-JOIN minimal data standard will include HEAL Common Data Elements (CDEs) (e.g., standardized demographics, general pain, psychosocial and functional measures), and RE-JOIN common data elements (R-CDE) (i.e., both general and joint-specific standardized and clinically important self-reported pain and function measures, as well as pressure pain thresholds part of quantitative sensory testing). In addition, discretionary, site-specific measures will be collected by individual institutions (e.g., expanded quantitative sensory testing and gait biomechanical assessments), specific to the knee or TMJ. Research teams will submit datasets of standardized metadata to the RE-JOIN Data Coordinating Center (DCG) via a secure cloud-based central data repository and computing infrastructure for researchers to share and conduct analyses on data collected by or acquired for RE-JOIN. RE-JOIN datasets will have protected health information (PHI) removed and be publicly available on the SPARC portal and accessible through the HEAL Data Ecosystem.
Conclusion
Data Harmonization efforts provide the multidisciplinary consortium with an opportunity to effectively collaborate across decentralized research teams, and data standardization sets the framework for efficient future analyses of RE-JOIN data collected by the consortium. The harmonized phenotypic information obtained will significantly enhance our understanding of the neurobiology of the pain-pathology relationships in humans, providing valuable insights for comparison with pre-clinical models.