{"title":"用于跨模态检索的自代表和标签宽松散列编码","authors":"Lin Jiang , Jigang Wu , Shuping Zhao , Jiaxing Li","doi":"10.1016/j.patrec.2024.08.011","DOIUrl":null,"url":null,"abstract":"<div><p>In cross-modal retrieval, most existing hashing-based methods merely considered the relationship between feature representations to reduce the heterogeneous gap for data from various modalities, whereas they neglected the correlation between feature representations and the corresponding labels. This leads to the loss of significant semantic information, and the degradation of the class discriminability of the model. To tackle these issues, this paper presents a novel cross-modal retrieval method called coding self-representative and label-relaxed hashing (CSLRH) for cross-modal retrieval. Specifically, we propose a self-representation learning term to enhance the class-specific feature representations and reduce the noise interference. Additionally, we introduce a label-relaxed regression to establish semantic relations between the hash codes and the label information, aiming to enhance the semantic discriminability. Moreover, we incorporate a non-linear regression to capture the correlation of non-linear features in hash codes for cross-modal retrieval. Experimental results on three widely-used datasets verify the effectiveness of our proposed method, which can generate more discriminative hash codes to improve the precisions of cross-modal retrieval.</p></div>","PeriodicalId":54638,"journal":{"name":"Pattern Recognition Letters","volume":"185 ","pages":"Pages 1-7"},"PeriodicalIF":3.9000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coding self-representative and label-relaxed hashing for cross-modal retrieval\",\"authors\":\"Lin Jiang , Jigang Wu , Shuping Zhao , Jiaxing Li\",\"doi\":\"10.1016/j.patrec.2024.08.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In cross-modal retrieval, most existing hashing-based methods merely considered the relationship between feature representations to reduce the heterogeneous gap for data from various modalities, whereas they neglected the correlation between feature representations and the corresponding labels. This leads to the loss of significant semantic information, and the degradation of the class discriminability of the model. To tackle these issues, this paper presents a novel cross-modal retrieval method called coding self-representative and label-relaxed hashing (CSLRH) for cross-modal retrieval. Specifically, we propose a self-representation learning term to enhance the class-specific feature representations and reduce the noise interference. Additionally, we introduce a label-relaxed regression to establish semantic relations between the hash codes and the label information, aiming to enhance the semantic discriminability. Moreover, we incorporate a non-linear regression to capture the correlation of non-linear features in hash codes for cross-modal retrieval. Experimental results on three widely-used datasets verify the effectiveness of our proposed method, which can generate more discriminative hash codes to improve the precisions of cross-modal retrieval.</p></div>\",\"PeriodicalId\":54638,\"journal\":{\"name\":\"Pattern Recognition Letters\",\"volume\":\"185 \",\"pages\":\"Pages 1-7\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pattern Recognition Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167865524002435\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167865524002435","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Coding self-representative and label-relaxed hashing for cross-modal retrieval
In cross-modal retrieval, most existing hashing-based methods merely considered the relationship between feature representations to reduce the heterogeneous gap for data from various modalities, whereas they neglected the correlation between feature representations and the corresponding labels. This leads to the loss of significant semantic information, and the degradation of the class discriminability of the model. To tackle these issues, this paper presents a novel cross-modal retrieval method called coding self-representative and label-relaxed hashing (CSLRH) for cross-modal retrieval. Specifically, we propose a self-representation learning term to enhance the class-specific feature representations and reduce the noise interference. Additionally, we introduce a label-relaxed regression to establish semantic relations between the hash codes and the label information, aiming to enhance the semantic discriminability. Moreover, we incorporate a non-linear regression to capture the correlation of non-linear features in hash codes for cross-modal retrieval. Experimental results on three widely-used datasets verify the effectiveness of our proposed method, which can generate more discriminative hash codes to improve the precisions of cross-modal retrieval.
期刊介绍:
Pattern Recognition Letters aims at rapid publication of concise articles of a broad interest in pattern recognition.
Subject areas include all the current fields of interest represented by the Technical Committees of the International Association of Pattern Recognition, and other developing themes involving learning and recognition.