石墨烯在锌/石墨烯/壳聚糖涂层的杀菌活性和生物活性中的作用

IF 6.5 2区 材料科学 Q1 CHEMISTRY, APPLIED Progress in Organic Coatings Pub Date : 2024-08-28 DOI:10.1016/j.porgcoat.2024.108761
{"title":"石墨烯在锌/石墨烯/壳聚糖涂层的杀菌活性和生物活性中的作用","authors":"","doi":"10.1016/j.porgcoat.2024.108761","DOIUrl":null,"url":null,"abstract":"<div><p>The antibacterial ability of an implant is governed by the interaction between the surface of the material and the cells. Nanosized features that promote bacterial killing were achieved through synthesizing a Zn/graphene/chitosan surface on a NiTi alloy. The surface morphology and microstructure of the Zn/graphene/chitosan surfaces were observed, and their antibacterial behavior was investigated. The Zn/graphene/chitosan surface exhibited 93 % antibacterial activity against <em>Staphylococcus aureus</em> (<em>S. aureus</em>), which was higher than the Zn/chitosan surface (67 %), and it inhibited bacterial adhesion. This was attributed to the fast release of Zn ions from the Zn/graphene/chitosan surfaces and the sharp morphology of graphene on the surface. In addition, the adhesion of the Zn/graphene/chitosan coating increased with the amount of graphene content. This finding suggests that the synergy of graphene improves the antibacterial ability, bioactivity, and adhesion of Zn-containing coatings.</p></div>","PeriodicalId":20834,"journal":{"name":"Progress in Organic Coatings","volume":null,"pages":null},"PeriodicalIF":6.5000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Role of graphene in bactericidal activity and bioactivity of a Zn/graphene/chitosan coating\",\"authors\":\"\",\"doi\":\"10.1016/j.porgcoat.2024.108761\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The antibacterial ability of an implant is governed by the interaction between the surface of the material and the cells. Nanosized features that promote bacterial killing were achieved through synthesizing a Zn/graphene/chitosan surface on a NiTi alloy. The surface morphology and microstructure of the Zn/graphene/chitosan surfaces were observed, and their antibacterial behavior was investigated. The Zn/graphene/chitosan surface exhibited 93 % antibacterial activity against <em>Staphylococcus aureus</em> (<em>S. aureus</em>), which was higher than the Zn/chitosan surface (67 %), and it inhibited bacterial adhesion. This was attributed to the fast release of Zn ions from the Zn/graphene/chitosan surfaces and the sharp morphology of graphene on the surface. In addition, the adhesion of the Zn/graphene/chitosan coating increased with the amount of graphene content. This finding suggests that the synergy of graphene improves the antibacterial ability, bioactivity, and adhesion of Zn-containing coatings.</p></div>\",\"PeriodicalId\":20834,\"journal\":{\"name\":\"Progress in Organic Coatings\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Organic Coatings\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0300944024005538\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Organic Coatings","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0300944024005538","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

植入物的抗菌能力取决于材料表面与细胞之间的相互作用。通过在镍钛合金上合成锌/石墨烯/壳聚糖表面,实现了促进细菌杀灭的纳米特征。研究人员观察了锌/石墨烯/壳聚糖表面的形态和微观结构,并对其抗菌行为进行了研究。Zn/ 石墨烯/壳聚糖表面对金黄色葡萄球菌(S. aureus)的抗菌活性为 93%,高于 Zn/ 壳聚糖表面(67%),而且抑制了细菌的粘附。这归因于锌/石墨烯/壳聚糖表面锌离子的快速释放以及表面石墨烯的锐利形态。此外,锌/石墨烯/壳聚糖涂层的附着力随着石墨烯含量的增加而增强。这一发现表明,石墨烯的协同作用提高了含锌涂层的抗菌能力、生物活性和附着力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Role of graphene in bactericidal activity and bioactivity of a Zn/graphene/chitosan coating

The antibacterial ability of an implant is governed by the interaction between the surface of the material and the cells. Nanosized features that promote bacterial killing were achieved through synthesizing a Zn/graphene/chitosan surface on a NiTi alloy. The surface morphology and microstructure of the Zn/graphene/chitosan surfaces were observed, and their antibacterial behavior was investigated. The Zn/graphene/chitosan surface exhibited 93 % antibacterial activity against Staphylococcus aureus (S. aureus), which was higher than the Zn/chitosan surface (67 %), and it inhibited bacterial adhesion. This was attributed to the fast release of Zn ions from the Zn/graphene/chitosan surfaces and the sharp morphology of graphene on the surface. In addition, the adhesion of the Zn/graphene/chitosan coating increased with the amount of graphene content. This finding suggests that the synergy of graphene improves the antibacterial ability, bioactivity, and adhesion of Zn-containing coatings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Progress in Organic Coatings
Progress in Organic Coatings 工程技术-材料科学:膜
CiteScore
11.40
自引率
15.20%
发文量
577
审稿时长
48 days
期刊介绍: The aim of this international journal is to analyse and publicise the progress and current state of knowledge in the field of organic coatings and related materials. The Editors and the Editorial Board members will solicit both review and research papers from academic and industrial scientists who are actively engaged in research and development or, in the case of review papers, have extensive experience in the subject to be reviewed. Unsolicited manuscripts will be accepted if they meet the journal''s requirements. The journal publishes papers dealing with such subjects as: • Chemical, physical and technological properties of organic coatings and related materials • Problems and methods of preparation, manufacture and application of these materials • Performance, testing and analysis.
期刊最新文献
A facile strategy to resolve the contradiction between dispersion stability and coating anti-smudge performance of bio-based waterborne polyurethane under ambient condition Polydopamine-polyvinyl alcohol hydrogel coatings with enhanced mechanical and tribological performance Anti-corrosion studies on cardanol epoxy coatings cured with redox-active aromatic trimer and tetramer oligoanilines Fluorine-containing main-chain type active esters as curing agents for epoxy resins to achieve superior dielectric and thermal performances Protein-tannin interactions towards fabricating flame-retardant, UV-resistance, antibacterial and mechanical-reinforced PA66 fabric
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1