通过基尼距离相关性对超高维分类进行分组特征筛选

IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY Journal of Multivariate Analysis Pub Date : 2024-08-17 DOI:10.1016/j.jmva.2024.105360
Yongli Sang , Xin Dang
{"title":"通过基尼距离相关性对超高维分类进行分组特征筛选","authors":"Yongli Sang ,&nbsp;Xin Dang","doi":"10.1016/j.jmva.2024.105360","DOIUrl":null,"url":null,"abstract":"<div><p>Gini distance correlation (GDC) was recently proposed to measure the dependence between a categorical variable, <span><math><mi>Y</mi></math></span>, and a numerical random vector, <span><math><mi>X</mi></math></span>. It mutually characterizes independence between <span><math><mi>X</mi></math></span> and <span><math><mi>Y</mi></math></span>. In this article, we utilize the GDC to establish a feature screening for ultrahigh-dimensional discriminant analysis where the response variable is categorical. It can be used for screening individual features as well as grouped features. The proposed procedure possesses several appealing properties. It is model-free. No model specification is needed. It holds the sure independence screening property and the ranking consistency property. The proposed screening method can also deal with the case that the response has divergent number of categories. We conduct several Monte Carlo simulation studies to examine the finite sample performance of the proposed screening procedure. Real data analysis for two real life datasets are illustrated.</p></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":"204 ","pages":"Article 105360"},"PeriodicalIF":1.4000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Grouped feature screening for ultrahigh-dimensional classification via Gini distance correlation\",\"authors\":\"Yongli Sang ,&nbsp;Xin Dang\",\"doi\":\"10.1016/j.jmva.2024.105360\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Gini distance correlation (GDC) was recently proposed to measure the dependence between a categorical variable, <span><math><mi>Y</mi></math></span>, and a numerical random vector, <span><math><mi>X</mi></math></span>. It mutually characterizes independence between <span><math><mi>X</mi></math></span> and <span><math><mi>Y</mi></math></span>. In this article, we utilize the GDC to establish a feature screening for ultrahigh-dimensional discriminant analysis where the response variable is categorical. It can be used for screening individual features as well as grouped features. The proposed procedure possesses several appealing properties. It is model-free. No model specification is needed. It holds the sure independence screening property and the ranking consistency property. The proposed screening method can also deal with the case that the response has divergent number of categories. We conduct several Monte Carlo simulation studies to examine the finite sample performance of the proposed screening procedure. Real data analysis for two real life datasets are illustrated.</p></div>\",\"PeriodicalId\":16431,\"journal\":{\"name\":\"Journal of Multivariate Analysis\",\"volume\":\"204 \",\"pages\":\"Article 105360\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Multivariate Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0047259X24000678\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multivariate Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X24000678","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

基尼距离相关性(Gini distance correlation,GDC)是最近提出的一种测量分类变量 Y 与数值随机向量 X 之间依赖关系的方法。它既可用于筛选单个特征,也可用于筛选分组特征。所提出的程序具有几个吸引人的特性。无模型。无需模型规范。它具有确定的独立性筛选属性和排序一致性属性。所提出的筛选方法还能处理响应类别数量不一的情况。我们进行了多项蒙特卡罗模拟研究,以检验所提出的筛选程序的有限样本性能。我们还对两个真实数据集进行了实际数据分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Grouped feature screening for ultrahigh-dimensional classification via Gini distance correlation

Gini distance correlation (GDC) was recently proposed to measure the dependence between a categorical variable, Y, and a numerical random vector, X. It mutually characterizes independence between X and Y. In this article, we utilize the GDC to establish a feature screening for ultrahigh-dimensional discriminant analysis where the response variable is categorical. It can be used for screening individual features as well as grouped features. The proposed procedure possesses several appealing properties. It is model-free. No model specification is needed. It holds the sure independence screening property and the ranking consistency property. The proposed screening method can also deal with the case that the response has divergent number of categories. We conduct several Monte Carlo simulation studies to examine the finite sample performance of the proposed screening procedure. Real data analysis for two real life datasets are illustrated.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Multivariate Analysis
Journal of Multivariate Analysis 数学-统计学与概率论
CiteScore
2.40
自引率
25.00%
发文量
108
审稿时长
74 days
期刊介绍: Founded in 1971, the Journal of Multivariate Analysis (JMVA) is the central venue for the publication of new, relevant methodology and particularly innovative applications pertaining to the analysis and interpretation of multidimensional data. The journal welcomes contributions to all aspects of multivariate data analysis and modeling, including cluster analysis, discriminant analysis, factor analysis, and multidimensional continuous or discrete distribution theory. Topics of current interest include, but are not limited to, inferential aspects of Copula modeling Functional data analysis Graphical modeling High-dimensional data analysis Image analysis Multivariate extreme-value theory Sparse modeling Spatial statistics.
期刊最新文献
Sparse functional varying-coefficient mixture regression Maximum likelihood estimation of elliptical tail Covariance parameter estimation of Gaussian processes with approximated functional inputs PDE-regularised spatial quantile regression Diagnostic checking of periodic vector autoregressive time series models with dependent errors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1