最大泊松球采样的并行和无偏差 RSA 算法

IF 7.2 2区 物理与天体物理 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computer Physics Communications Pub Date : 2024-08-23 DOI:10.1016/j.cpc.2024.109354
{"title":"最大泊松球采样的并行和无偏差 RSA 算法","authors":"","doi":"10.1016/j.cpc.2024.109354","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we propose and benchmark an innovative implementation of the Random Sequential Addition (or adsorption) (<span>Rsa</span>) algorithm. It provides <span>Mpi</span> parallelization and is designed to generate a high number of spheres aiming for maximal compactness, without introducing any bias. Although parallelization of such an algorithm has been successfully undertaken with shared memory (and in particular with <span>Gpu</span>), this is seemingly the first available implementation with distributed memory (<span>Mpi</span>). Our implementation successfully generated more than 12 billions of spheres over 131,072 <span>Mpi</span> processes in 16 seconds in dimension <span><math><mi>d</mi><mo>=</mo><mn>3</mn></math></span>.</p></div>","PeriodicalId":285,"journal":{"name":"Computer Physics Communications","volume":null,"pages":null},"PeriodicalIF":7.2000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parallel and bias-free RSA algorithm for maximal Poisson-sphere sampling\",\"authors\":\"\",\"doi\":\"10.1016/j.cpc.2024.109354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper we propose and benchmark an innovative implementation of the Random Sequential Addition (or adsorption) (<span>Rsa</span>) algorithm. It provides <span>Mpi</span> parallelization and is designed to generate a high number of spheres aiming for maximal compactness, without introducing any bias. Although parallelization of such an algorithm has been successfully undertaken with shared memory (and in particular with <span>Gpu</span>), this is seemingly the first available implementation with distributed memory (<span>Mpi</span>). Our implementation successfully generated more than 12 billions of spheres over 131,072 <span>Mpi</span> processes in 16 seconds in dimension <span><math><mi>d</mi><mo>=</mo><mn>3</mn></math></span>.</p></div>\",\"PeriodicalId\":285,\"journal\":{\"name\":\"Computer Physics Communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Physics Communications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010465524002777\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Physics Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010465524002777","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了随机顺序加法(或吸附)(Rsa)算法的创新实现,并对其进行了基准测试。该算法提供 Mpi 并行化,旨在生成大量球体,追求最大紧凑性,同时不引入任何偏差。虽然共享内存(特别是 Gpu)已经成功实现了这种算法的并行化,但这似乎是首个使用分布式内存(Mpi)实现的算法。在维度 d=3 的情况下,我们的实现在 16 秒内通过 131,072 个 Mpi 进程成功生成了超过 120 亿个球体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Parallel and bias-free RSA algorithm for maximal Poisson-sphere sampling

In this paper we propose and benchmark an innovative implementation of the Random Sequential Addition (or adsorption) (Rsa) algorithm. It provides Mpi parallelization and is designed to generate a high number of spheres aiming for maximal compactness, without introducing any bias. Although parallelization of such an algorithm has been successfully undertaken with shared memory (and in particular with Gpu), this is seemingly the first available implementation with distributed memory (Mpi). Our implementation successfully generated more than 12 billions of spheres over 131,072 Mpi processes in 16 seconds in dimension d=3.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computer Physics Communications
Computer Physics Communications 物理-计算机:跨学科应用
CiteScore
12.10
自引率
3.20%
发文量
287
审稿时长
5.3 months
期刊介绍: The focus of CPC is on contemporary computational methods and techniques and their implementation, the effectiveness of which will normally be evidenced by the author(s) within the context of a substantive problem in physics. Within this setting CPC publishes two types of paper. Computer Programs in Physics (CPiP) These papers describe significant computer programs to be archived in the CPC Program Library which is held in the Mendeley Data repository. The submitted software must be covered by an approved open source licence. Papers and associated computer programs that address a problem of contemporary interest in physics that cannot be solved by current software are particularly encouraged. Computational Physics Papers (CP) These are research papers in, but are not limited to, the following themes across computational physics and related disciplines. mathematical and numerical methods and algorithms; computational models including those associated with the design, control and analysis of experiments; and algebraic computation. Each will normally include software implementation and performance details. The software implementation should, ideally, be available via GitHub, Zenodo or an institutional repository.In addition, research papers on the impact of advanced computer architecture and special purpose computers on computing in the physical sciences and software topics related to, and of importance in, the physical sciences may be considered.
期刊最新文献
Ensemble Monte Carlo calculations with five novel moves Alternative split-step method for solving linearly coupled nonlinear Schrödinger equations NTVTOK-ML: Fast surrogate model for neoclassical toroidal viscosity torque calculation in tokamaks based on machine learning methods Time-domain mathematical modeling of external cloak metamaterials with an unconditionally stable finite element method Performance evaluation of the LBM simulations in fluid dynamics on SX-Aurora TSUBASA vector engine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1